Share:


Optimization problems for a thermoelastic frictional contact problem

    Othmane Baiz   Affiliation
    ; Hicham Benaissa   Affiliation
    ; Rachid Bouchantouf   Affiliation
    ; Driss El Moutawakil   Affiliation

Abstract

In the present paper, we analyze and study the control of a static thermoelastic contact problem. We consider a model which describes a frictional contact problem between a thermoelastic body and a deformable heat conductor obstacle. We derive a variational formulation of the model which is in the form of a coupled system of the quasi-variational inequality of elliptic type for the displacement and the nonlinear variational equation for the temperature. Then, under a smallness assumption, we prove the existence of a unique weak solution to the problem. Moreover, we establish the dependence of the solution with respect to the data and prove a convergence result. Finally, we introduce an optimization problem related to the contact model for which we prove the existence of a minimizer and provide a convergence result.

Keyword : thermo-elastic material, frictional contact, variational coupled system, convergence results, optimization problem

How to Cite
Baiz, O., Benaissa, H., Bouchantouf, R., & El Moutawakil, D. (2021). Optimization problems for a thermoelastic frictional contact problem. Mathematical Modelling and Analysis, 26(3), 444-468. https://doi.org/10.3846/mma.2021.12803
Published in Issue
Sep 9, 2021
Abstract Views
715
PDF Downloads
547
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

A. Amassad, D. Chenais and C. Fabre. Optimal control of an elastic contact problem involving tresca friction law. Nonlinear Anal. Theory Methods Appl., 48(8):1107–1135, 2002. https://doi.org/10.1016/S0362-546X(00)00241-8

A. Amassad, K.L. Kuttler, M. Rochdi and M. Shillor. Quasi-static thermoviscoelastic contact problem with slip dependent friction coefficient. Math. Comput. Model.,36(7–8):839–854,2002. https://doi.org/10.1016/S0895-7177(02)00231-5

L. E. Andersson, A. Klarbring, J. R. Barber and M. Ciavarella. On the existence and uniqueness of steady state solutions in thermoelastic contact with frictional heating. In Proceedings of the Royal Society A Mathematical, Physical and Engineering Sciences, volume 461, pp. 1261–1282, 2005. https://doi.org/10.1098/rspa.2004.1398

M. Campo and J. Fernández. Numerical analysis of a quasistatic thermoviscoelastic frictional contact problem. J. Comput. Mech., 35:459–469, 2005. https://doi.org/10.1007/s00466-004-0635-4

M. Couderc and M. Sofonea. An elastic frictional contact problem with unilateral constraint. Mediterr. J. Math., 15(195), 2018. https://doi.org/10.1007/s00009-018-1243-4

G. Duvaut. Free boundary problem connected with thermoelasticity and unilateral contact. In Free boundary problems, volume 2 of Free boundary problems, pp. 217–236, Roma, 1980.

C. Eck and J. Jarušek. Existence of solutions to a nonlinear coupled thermoviscoelastic contact problem with small coulomb friction. Applied Nonlinear Analysis, Springer, Boston, 2002.

A.S. El-Karamany and M.A. Ezzat. On the boundary integral formulation of thermo-viscoelasticity theory. International Journal of Engineering Science, 40(17):1943–1956, 2002. https://doi.org/10.1016/S0020-7225(02)00043-5

J.L. Lions. Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles. Dunod, Paris, 1968.

J.L. Lions and E. Magenes. Problèmes aux limites non homogènes et applications. Dunod, Paris, 1968.

A. Matei and S. Micu. Boundary optimal control for nonlinear antiplane problems. Nonlinear Anal. Theory Methods Appl., 74(5):1641–1652, 2011. https://doi.org/10.1016/j.na.2010.10.034

A. Matei and S. Micu. Boundary optimal control for a frictional contact problem with normal compliance. Appl. Math. Optim., 78:379–401, 2018. https://doi.org/10.1007/s00245-017-9410-8

A. Matei, S. Micu and C. Nită. Optimal control for antiplane frictional contact problems involving nonlinearly elastic materials of hencky type. Math. Mech. Solids, 23(3):308–328, 2017. https://doi.org/10.1177/1081286517718605

F. Mignot. Contrôle dans les inéquations variationnelles elliptiques. Jou. Func. Anal., 22(2):130–185, 1976. https://doi.org/10.1016/0022-1236(76)90017-3

F. Mignot and J.P. Puel. Optimal control in some variational inequalities. SIAM J. Control Optim., 22(3):466–476, 1984. https://doi.org/10.1137/0322028

P. Neittaanmaki, J. Sprekels and D. Tiba. Optimization of Elliptic Systems: Theory and Applications. Springer Monographs in Mathematics. Springer-Verlag, New York, 2006.

M. Sofonea. Optimal control of variational-hemivariational inequalities in reflexive banach spaces. Appl. Math. Optim., 79:621–646, 2019. https://doi.org/10.1007/s00245-017-9450-0

M. Sofonea, Y. Xiao and M. Couderc. Optimization problems for a viscoelastic frictional contact problem with unilateral constraints. Nonlinear Analysis: Real World Applications, 50:86–103, 2019. https://doi.org/10.1016/j.nonrwa.2019.04.005

M. Sofonea and Y.B. Xiao. Boundary optimal control of a nonsmooth frictionless contact problem. Comput. Math. Appl., 38(1):152–165, 2019. https://doi.org/10.1016/j.camwa.2019.02.027

M. Sofonea and Y.B. Xiao. Optimization problems for elastic contact models with unilateral constraints. Z. Angew. Math. Phys., 70(1), 2019. https://doi.org/10.1007/s00033-018-1046-2

Y.B. Xiao and M. Sofonea. On the optimal control of variationalhemivariational inequalities. J. Math. Anal. Appl., 475(1):364–384, 2019. https://doi.org/10.1016/j.jmaa.2019.02.046

J.P. Yvon. Contrôle optimal de systèmes gouvernés par des inéquations variationnelles. Rapport Laboria, INRIA, Rocquencourt, France, 1974.