On the Modulus of the Selberg Zeta-Functions in the Critical Strip

    Andrius Grigutis Info
    Darius Šiaučiūnas Info
DOI: https://doi.org/10.3846/13926292.2015.1119213

Abstract

We investigate the behavior of the real part of the logarithmic derivatives of the Selberg zeta-functions ZPSL(2,Z)(s) and ZC (s) in the critical strip 0 < σ < 1. The functions ZPSL(2,Z)(s) and ZC (s) are defined on the modular group and on the compact Riemann surface, respectively.

Keywords:

Selberg zeta-function, modular group, compact Riemann surface, Riemann zeta-function, critical strip

How to Cite

Grigutis, A., & Šiaučiūnas, D. (2015). On the Modulus of the Selberg Zeta-Functions in the Critical Strip. Mathematical Modelling and Analysis, 20(6), 852-865. https://doi.org/10.3846/13926292.2015.1119213

Share

Published in Issue
November 23, 2015
Abstract Views
594

View article in other formats

CrossMark check

CrossMark logo

Published

2015-11-23

Issue

Section

Articles

How to Cite

Grigutis, A., & Šiaučiūnas, D. (2015). On the Modulus of the Selberg Zeta-Functions in the Critical Strip. Mathematical Modelling and Analysis, 20(6), 852-865. https://doi.org/10.3846/13926292.2015.1119213

Share