Share:


Model of the big data use for customer cognition

Abstract

In a customer-oriented market, understanding customer behavior is an important determinant of the success of an organization. An organization that strives to survive and succeed can not ignore increasing amounts of data – big data. Big data is complex data arrays that are difficult to process using traditional data processing applications. Optimal analysis of such data enables organizations for better understanding of its customers, improve the decision-making process and increase its competitive advantage. It is important for the organization to understand how to use big data, which processing tools and models to apply. This article analyzes the concepts and evolution of big data, the risks of exploitation, mining methods and applied models. Applied methods: systematic, logical analysis of information sources, comparison of information, systemization.


Article in Lithuanian.


Didžiųjų duomenų naudojimas klientui pažinti


Santrauka


Į klientus orientuotoje rinkoje klientų elgsenos supratimas yra svarbus veiksnys, lemiantis organizacijos sėkmę. Organizacija, siekianti išlikti ir sėkmingai egzistuoti, negali ignoruoti nuolat didėjančių duomenų kiekių – didžiųjų duomenų. Didieji duomenys – sudėtingi duomenų masyvai, kuriuos sunku apdoroti naudojant tradicines duomenų apdorojimo programas. Optimaliai išanalizuoti tokie duomenys suteikia galimybę geriau pažinti klientus, tobulinti sprendimų priėmimo procesą, didinti konkurencinį pranašumą. Organizacijai svarbu suprasti, kaip panaudoti didžiuosius duomenis, kokias apdorojimo priemones ir modelius taikyti. Šiame straipsnyje analizuojamos didžiųjų duomenų koncepcijos ir raida, naudojimo rizikos, gavybos būdai ir taikomi modeliai. Taikomi šie metodai: mokslinių šaltinių sisteminė, loginė analizė, informacijos sugretinimas, sisteminimas.


Reikšminiai žodžiai: didieji duomenys, kliento pažinimas, didžiųjų duomenų analizė, naudojimo rizikos, duomenų tyryba, duomenų valdymas.

Keyword : Big data, customer cognition, big data analytics, risks of exploitation, big data mining, big data management

How to Cite
Politaitė, S., & Sabaitytė, J. (2018). Model of the big data use for customer cognition. Mokslas – Lietuvos Ateitis / Science – Future of Lithuania, 10. https://doi.org/10.3846/mla.2018.932
Published in Issue
Jul 5, 2018
Abstract Views
1261
PDF Downloads
1425
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Abawajy, J. H., Kelarev, A., & Chowdhury, M. (2014). Large iterative multitier ensemble classifiers for security of big data. IEEE Transactions on Emerging Topics in Computing, 2(3), 352-363. https://doi.org/10.1109/TETC.2014.2316510

Akoka, J., Comyn-Wattiau, I., & Laoufi, N. (2017). Research on Big Data – a systematic mapping study. Computer Standards & Interfaces, 54(2), 105-115. https://doi.org/10.1016/j.csi.2017.01.004

Alharthi, A., Krotov, V., & Bowman, M. (2017). Addressing barriers to big data. Business Horizons, 60(5), 285-292. https://doi.org/10.1016/j.bushor.2017.01.002

Beyer, A. M., & Laney, D. (2012). The Importance of Big Data: a definition. Gartner, Stamford, CT. Retrieved from https://www.gartner.com/doc/2057415/importance-big-data-definition

Boyd, D., & Crawford, K. (2012). Critical questions for big data: provocations for a cultural, technological, and scholarly phenomenon, Information. Communication & Society, 15(5), 662-679. https://doi.org/10.1080/1369118X.2012.678878

Boksem, M. A. S., & Smidts, A. (2015). Brain responses to movietrailers predict individual preferences for movies and their population-wide commercial success. Journal of Marketing Research, 52(4), 482-492. https://doi.org/10.1509/jmr.13.0572

Chen, M., Chiang, R. H. L., & Storey, V. C. (2012). Business intelligence and analytics: From Big Data to Big Imptact. MIS Quarterly: Management Information Systems, 36(4), 1165-1188.

De Mauro, A., Greco, M., & Grimaldi, M. (2014). What is big data? A consensual definition and a review of key research topics. 4th International Conference on Integrated Information AIP Proceedings. Madrid.

Deloitte. (2015). Opportunities in Telecom Sector: arising from Big Data. Retrieved from https://www2.deloitte.com/content/dam/Deloitte/in/Documents/technology-media-tel-ecommunications/in-tmt-opportunities-in-telecom-sector-noexp.pdf

Diebold, F. X. (2012). A personal perspective on the origin(s) and develop-ment of “big data”: The phenomenon, the term, and the discipline, second version. Retrieved from https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2202843

Dippel, A. (2017). Das Big Data Game, NTM Zeitschrift für Geschichte der Wissenschaften. Technik und Medizin, 25(4), 485-517.

Fan, J., Han, F., & Liu, H. (2016). Challenges of big data analysis. National ScienceReview, 1(2), 293-314. https://doi.org/10.1093/nsr/nwt032

Gaber, M. M. (2010). Scientific data mining and knowledge discovery – principles and foundations (397 p.). New York: Springer. ISBN: 97 836 42027871.

Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International Journal of In-formation Management, 35(2), 137-144. https://doi.org/10.1016/j.ijinfomgt.2014.10.007

Gartner. (2015). Gartner says business intelligence and analytics leaders must focus on mindsets and culture to kick start ad-vanced analytics. Retrieved from https://www.gartner.com/newsroom/id/3130017

Gartner. (2017). Big data. Retrieved from http://www.gartner.com/it-glossary/big-data/

Gupta, U. G., & Gupta, A. (2016). Vision: a missing key dimension in the 5V Big Data framework. Journal of International Business Research and Marketing, 1(3), 46-52.Hua Tan, K., & Zhan, Y. (2016). Improving new product devel-opment using big data: a case study of an electronics company. R&D Management, 47(4), 570-582. https://doi.org/10.1111/radm.12242

Jinjiang, Y.; Xueling, Z. (2016). The research on China’s current online retail statistics based on Big Data’s Perspective. Innovation, entrepreneurship and strategy in the era of internet (pp. 388-393).

Kaur, K., Kaur, I., Kaur, N., Tanisha, Gurmeen, & Deepi. (2016). Big data management: characteristics, challenges and solutions. International Journal of Computer Science and Technology, 7(4), 54-57.

Khan, N., Yaqoob, I., Hashem, I. A. T., Inayat, Z., Ali, W. K. M., Alam, M., Shiraz, M., & Gani, A. (2014). Big data: survey, technologies, opportunities, and challenges. The Scientific World Journal. Retrieved from https://www.hindawi.com/journals/tswj/2014/712826/

Koturwar, P., Girase, S., & Mukhopadhyay, D. (2015). A survey of classification techniques in the area of big data. International Journal of Advance Foundation and Research in Computer, 1(11), 1-7.

Krasnow Waterman, K., & Bruening P. J. (2014). Big Data analytics: risks and responsibilities. International Data Privacy Law, 4(2), 89-95. https://doi.org/10.1093/idpl/ipu002

Laney, D. (2001). 3-D data management: controlling data volume, velocityand variety. Application delivery strategies by META Group Inc. Retrieved from https://blogs.gartner.com/doug-laney/files/2012/01/ad949-3D-Data-Management-Controlling-Data-Volume-Velocity-and-Variety.pdf

Langkafel, P. (2016). Big Data in medical science and healthcare management: diagnosis, therapy, side effects (248 p.). Germany: Berlin. ISBN: 978-3-11-044528-2.

Lee, I. (2017). Big Data: dimensions, evolution, impacts, and challenges. Business Horizons, 60(3), 293-303. https://doi.org/10.1016/j.bushor.2017.01.004

Lee, J., Kao, H. A., & Yang, S. (2014). Service innovation and smart analytics for Industry 4.0 and big data environment. Procedia CIRP, 16, 3-8. https://doi.org/10.1016/j.procir.2014.02.001

Makhdoomi, M. (2017). Data mining approach for Big Data Analysis: a theoretical discourse. International Journal of Advanced Research in Computer Science, 8(7), 104-109. https://doi.org/10.26483/ijarcs.v8i7.4032

Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Byers, A. H. (2011). Big data: the next frontier for innovation, competition, and productivity. Retrieved from https://www.mckinsey.com/business-functions/digital-mckinsey/our-insights/big-data-the-next-frontier-for-innovation

Marr, B. (2015). Big Data: 20 mind-boggling facts everyone must read. Retrieved from https://www.forbes.com/sites/bernard-marr/2015/09/30/big-data-20-mind-boggling-facts-everyone-must-read/#5947d77c17b1

McAfee, A., & Brynjolfsson, E. (2012). Big data: the management revolution. Harvard Business Review, 90(10), 60-68.

Miller, S. (2014). Collaborative approaches needed to close the big data skills gap. Journal of Organization Design, 3(1), 26-30. https://doi.org/10.7146/jod.9823

Oussous, A., Benjelloun, F. Z., Lahcen, A. A., & Belfkih, S. (2017). Big Data technologies: a survey. Journal of King Saud University – Computer and Information Sciences. Retrieved from http://www.sciencedirect.com/science/article/pii/S1319157817300034

Pandey, P., Kumar, M., & Srivastava, P. (2016). Classification techniques for Big Data: a survey. Retrieved from http://iee-explore.ieee.org/stamp/stamp.jsp?arnumber=7724938

Panigrahi, P. K. (2012). A comparative study of supervised machine learning techniques for spam e-mail filtering. Fourth International Conference on Computational Intelligence and Communication Networks (pp. 506-512). https://doi.org/10.1109/CICN.2012.14

SAP. (2012). Small and midsize companies look to make big gains with “big data”. Retrieved from http://global.sap.com/corpo-rate-en/news.epx?PressID=19188

Seddon, J. J. J. M., & Currie, W. L. (2017). A model for unpacking big data analytics in high-frequency trading. Journal of Business Research, 70, 300-307. https://doi.org/10.1016/j.jbusres.2016.08.003

Sharma, S. (2015). Rise of Big Data and related issues. IEEE. Retrieved from http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7443346

Simon, P. (2014). The visual organization: data visualization, big data, and the quest for better decisions (28 p.). USA: SAS Institute.

Sivarajah, U., Kamal, M. M., Irani, Z., & Weerakkody, V. (2017). Critical analysis of Big Data challenges and analytical methods. Journal of Business Research, 70, 263-286. https://doi.org/10.1016/j.jbusres.2016.08.001

Stanton, S. J., Sinnott-Armstrong, W., & Huettel, S. A. (2017). Neuromarketing: ethical implications of its use and po-tential misuse. Journal of Business Ethics, 144(4), 799-811. https://doi.org/10.1007/s10551-016-3059-0

Sunita, B. A., & Lobo, L. M. R. J. (2012). A comparative study for selecting the best unsupervised learning algorithm in e-learning system. International Journal of Computer Applications, 41(3), 27-34. https://doi.org/10.5120/5523-7562

Tole, A. A. (2013). Big Data challenge. Database Systems Journal, 4(3), 31-40.

TRUSTe. (2015). 2015 US IoT Privacy Index. Retrieved from https://www.truste.com/resources/privacy-research/us-internet-of-things-index-2015/

ur Rehman, M. H., Liew, C. S., Abbas, A., Jayaraman, P. P., Wah, T. Y., & Khan, S. U. (2016). Big Data reduction methods: a survey. Data Science and Engineering, 1(4), 265-284. https://doi.org/10.1007/s41019-016-0022-0

Walker, R., ap Cenydd, L., Pop, S., Miles, H. C., Hughes, C., Teahan, W. J., & Roberts, J. C. (2013). Storyboarding for visual analytics, Information Visualization, 14(1), 27-50. https://doi.org/10.1177/1473871613487089

Wang, S., Wan, J., Zhang, D., Li, D., & Zhang, C. (2016). Towards smart factory for industry 4.0: a self-organized multi-agent system with big data based feedback and coordination. Computer Networks, 101(4), 158-168. https://doi.org/10.1016/j.comnet.2015.12.017

Ward, J. S., & Barker, A. (2013). Undefined by data: a survey of big data definitions. Retrieved from http://arxiv.org/abs/1309.5821

Zakir, J. (2015). Big Data analytics. International Association for Computer Information Systems, 16(2), 81-90.

Zhan, Y., Tan, K. H., Li, Y., & Tse, Y. K. (2016). Unlocking the power of big data in new product development. Annals of Operations Research (pp. 1-19). https://doi.org/10.1007/s10479-016-2379-x