Share:


Influence of heat treatment on microstructural evolution and mechanical characteristics of AA6061 aluminum alloy

Abstract

This study aims to understand the influence of heat treatment on behavior of AA6061 aluminum alloy at room temperature for various heat treatment. Two experimental parameters for this alloy are defined: micro hardness and the electrical resistivity, as a function of heat treatment at ambient temperature. The results show that the heat treatment conditions have an effective influence in mechanical properties of Al-Mg-Si aluminum alloy. This variation of the mechanical properties is the result of microstructural changes which have been observed using optical microscopy. When the material is subjected to a solution heat treatment followed by quenching and artificial aging, its mechanical properties, especially micro hardness and electrical resistivity, reach their highest levels and become very good compared to the other heat treatment applied to the same alloy.


Article in English.


Terminio apdorojimo įtaka aliuminio lydinio AA6061 mikrostruktūrai ir mechaninėms savybėms


Santrauka


Šio tyrimo tikslas – ištirti skirtingo terminio apdorojimo įtaką aliuminio lydinio AA 6061 savybėms. Siekta nustatyti, kaip terminio apdorojimo temperatūra veikia lydinio mikrostruktūrą ir elektrinę varžą. Tyrimų rezultatai rodo, kad terminis apdorojimas turi įtakos mechaninėms Al-Mg-Si lydinio savybėms. Šios įtakos rezultatas – tai mikrostruktūros pokyčiai, nustatyti optiniu mikroskopu. Terminiam apdorojimui pritaikant grūdinimo ir dirbtinio sendinimo režimus, pasiekiamas didžiausias mikro-kietumas ir elektrinė varža, palyginti su kitais terminio apdorojimo režimais.


Reikšminiai žodžiai: aliuminio lydinys 6061, terminis apdorojimas, mikrostruktūra, mikrokietumas, elektrinės savybės.

Keyword : Aluminum alloy 6061, heat treatment, microstructural characterization, micro hardness, electrical properties

How to Cite
Chabba, H., Gedzevičius, I., Varnauskas, V., Gargasas, J., Dafir, D., & Belmir, F. (2019). Influence of heat treatment on microstructural evolution and mechanical characteristics of AA6061 aluminum alloy. Mokslas – Lietuvos Ateitis / Science – Future of Lithuania, 11. https://doi.org/10.3846/mla.2019.7062
Published in Issue
Feb 1, 2019
Abstract Views
3205
PDF Downloads
503
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Barresi, J., Kerr, M. J., Wang, H., & Couper, M. J. (2000). Effect of magnesium, iron, and cooling rate on mechanical properties of Al-7Si-Mg foundry alloys. Journal AFS Transactions, 563-570.

Belingardi, G., & Obradovic, J. (2012). Recent development in car body lightweight design – a contribution toward greener environment. Journal Mobility and Vehicle Mechanics, 38, 9-23.

Carvalho, S., Vaz, F., Rebouta, L., Schneider, D., Cavaleiro, A., & Alves, E. (2001). Elastic properties of (Ti, Al, Si) N nano composite films. Journal Surface and Coatings Technology, 142(144), 110-116. https://doi.org/10.1016/S0257-8972(01)01242-7

Dadbakhsh, S., Karimi Taheri, A., & Smith, C. W. (2010). Strengthening study on 6082 Al alloy after combination of aging treatment and ECAP process. Journal Mater Sciences Engineering A, 527, 4758-4766. https://doi.org/10.1016/j.msea.2010.04.017

Davis, J. R. (1993). Aluminium and aluminium alloys. In ASM speciality handbook. ASM International, Materials Park, OH.Edwards, G. A., Stiller, K., Dunlop, G. L., & Couper, M. J. (1998).

The precipitation sequence in Al-Mg-Si alloys. Journal Acta Materialia, 46, 3893-3904. https://doi.org/10.1016/S1359-6454(98)00059-7

Gauthier, J., Louchez, P., & Samuel, F. H. (2016). Heat treatment of 319.2 Al automotive alloy. Journal Cast Metals, 8(1), 91-106.

Jarco, A., & Pezda, J. (2016). Effect of different variants of heat treatment on mechanical properties of the AlSi17CuNiMg alloy. Journal Archives of Foundry Engineering, 16, 41-44. https://doi.org/10.1515/afe-2016-0023

Jorstad, J. (1980). Influence of aluminum casting alloy metallurgical factors on machinability. Journal Society of Automotive Engineers, 89(Section 2: 800253-800756), 1892-1906. https://doi.org/10.4271/800486

Lo, R. Y., & Bogy, D. B. (1998). Compensating for elastic deformation of the indenter in hardness tests of very hard materials. Journal of Materials Research, 14(6), 2276-2282. https://doi.org/10.1557/JMR.1999.0304

Murayama, M., & Hono, K. (1999). Pre-precipitate clusters and precipitation processes in Al-Mg-Si alloys. Journal Acta Materialia, 47, 1537-1548. https://doi.org/10.1016/S1359-6454(99)00033-6

Pethicai, J. B., Hutchings, R., & Oliver, W. C. (1983). Hardness measurement at penetration depths as small as 20 nm. Journal Philosophical Magazine, 48(4), 593-606. https://doi.org/10.1080/01418618308234914

Pharr, G. M. (1998). Measurement of mechanical properties by ultra-low load. Journal Materials Science and Engineering, 253(1-2), 151-159. https://doi.org/10.1016/S0921-5093(98)00724-2

Pezda, J. (2012). Heat treatment of AlZn10Si7MgCu alloy and its effect on change of mechanical properties. Journal Archives of Foundry Engineering, 12, 135-138. https://doi.org/10.2478/v10266-012-0051-8

Rudnev, V., Loveless, D., Cook, R., & Black, M. (2002). Handbook of induction heating. USA: Markel Dekker Inc. https://doi.org/10.1201/9781420028904

Sharma, S. C., Girish, B., Kamath, R., & Sathish, B. M. (1999). Fractography, fluidity and fensile properties of aluminium/hematile particle composite. Journal of Materials Engineering Performance, 8(3), 309-314. https://doi.org/10.1361/105994999770346855