Share:


Traffic sign recognition using convolutional neural networks

Abstract

Traffic sign recognition is an important method that improves the safety in the roads, and this system is an additional step to autonomous driving. Nowadays, to solve traffic sign recognition problem, convolutional neural networks (CNN) can be adopted for its high performance well proved for computer vision applications. This paper proposes histogram equalization preprocessing (HOG) and CNN with additional operations – batch normalization, dropout and data augmentation. Several CNN architectures are compared to differentiate how each operation affects the accuracy of CNN model. Experimental results describe the effectiveness of using CNN with proposed operations.


Article in English.


Kelio ženklų atpažinimas naudojant neuroninį tinklą


Santrauka


Kelio ženklų atpažinimas – vienas iš svarbių būdų pagerinti saugumą keliuose. Ši sistema laikoma papildomu autonominio vairavimo žingsniu. Šiandien kelio ženklų atpažinimo problemai spręsti taikomi konvoliuciniai neuroniniai tinklai (KNN) dėl jų našumo, įrodyto vaizdų atpažinimo programose. Šiame straipsnyje siūlomas vaizdų histogramos išlyginimo apdorojimo metodas ir KNN su papildomomis operacijomis – paketo normalizavimas ir neuronų išjungimas / įjungimas. Yra palyginamos kelios KNN architektūros siekiant ištirti, kokią įtaką kiekviena operacija daro KNN modelio tikslumui. Eksperimentiniai rezultatai apibūdina KNN naudojimo efektyvumą su pasiūlytomis operacijomis.


Reikšminiai žodžiai: kelio ženklų atpažinimas, vaizdų apdorojimas, klasifikavimas, konvoliucinis neuroninis tinklas, paketo normalizavimas, neuronų išjungimas / įjungimas, eksperimentai.

Keyword : traffic sign recognition, image pre-processing, classification, convolutional neural network, batch normalization, dropout, experiment

How to Cite
Miloš, E., Kolesau, A., & Šešok, D. (2018). Traffic sign recognition using convolutional neural networks. Mokslas – Lietuvos Ateitis / Science – Future of Lithuania, 10. https://doi.org/10.3846/mla.2018.6947
Published in Issue
Dec 21, 2018
Abstract Views
1119
PDF Downloads
577
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Arnis. (2017). Neural networks for the beginners. Part 2 [in Russian]. Retrieved from http://www.pvsm.ru/algoritmy/242677

Boujemaa, K. S., Bouhoute, A., Boubouh, K., & Berrada, I. (2017). Traffic sign recognition using convolutional neural networks. International Conference on Wireless Networks and Mobile Communications (WINCOM) (pp. 1-6). Rabat.

Budhiraja, A. (2016). Dropout in (Deep) Machine learning. Retrieved from https://medium.com/@amarbudhiraja/https-medium-com-amarbudhiraja-learning-less-to-learn-better-dropout-in-deep-machine-learning-74334da4bfc5

Chilamkurthy, S. (2017). Keras Tutorial – Traffic Sign Recognition. Retrieved from https://chsasank.github.io/keras-tutorial.html

Chollet, F. (2015). Keras. Retrieved from https://github.com/keras-team/

Ciresan, D., Meier, U., Masci, J., & Schmidhuber, J. (2011). A committee of neural networks for traffic sign classification. Proceedings of the International Joint Conference on Neural Networks. 1918-1921. 10.1109/IJCNN.2011.6033458. Retrieved from http://www.people.usi.ch/mascij/data/papers/2011_ijcnn_committee.pdf

Doukali, F. (2017). Batch normalization in Neural Networks. Retrieved from https://towardsdatascience.com/batch-normalization-in-neural-networks-1ac91516821c

Haloi, M. (2015). Traffic Sign Classification Using Deep Inception Based Convolutional Networks. CoRR, abs/1511.02992. Retrieved from https://arxiv.org/pdf/1511.02992.pdf

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2012). Improving neural networks by preventing co-adaptation of feature detectors. CoRR abs/1207.0580.

Yadav, V. (2016). German sign classification using deep learning neural networks. Retrieved from https://chatbotslife.com/german-sign-classification-using-deep-learning-neural-networks-98-8-solution-d05656bf51ad

Yang, Y., Liu, S., Ma, W., Wang, Q., Zheng, & Liu. (2018). Efficent Traffic-Sign Recognition with Scale-aware CNN. BMVC. Retrieved from BMVC.

Yin, S., Deng, J., Zhang, D., & Du, J. (2017). Traffic Sign Recognition Based on Deep Convolutional Neural Network. CCCV, 685-695.

Lecun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural Computations, 541-551.

Loffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. ICML.

Mao, X., Hijazi, S. L., Casas, R. A., Kaul, P., Kumar, R., & Rowen, C. (2016). Hierarchical CNN for traffic sign recognition. Intelligent Vehicles Symposium, 130-135.

Melekhov, I., Kannala, J., & Rahtu, E. (2017, October 31). Image Patch Matching Using Convolutional Descriptors with Euclidean Distance. Retrieved from https://arxiv.org/pdf/1710.11359.pdf

Pandiyan, D. (2017). Traffic Sign Classifier. Retrieved from https://github.com/dhnkrn/Traffic-Sign-Classifier

Rouse, M. (2018). Neural network. Retrieved from https://search-enterpriseai.techtarget.com/definition/neural-network

Shustanov, A., & Yakimov, P. (2017). CNN Design for Real-Time Traffic Sign Recognition. 3rd International Conference “Information Technology and Nanotechnology”. Samara.

Siddhart, D. (2017, November 17). CNNs Architectures: LeNet, AlexNet, VGG, GoogLeNet, ResNet and more …. Retrieved from https://medium.com/@siddharthdas_32104/cnns-architectures-lenet-alexnet-vgg-googlenet-resnet-and-more-666091488df5

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15(1), 1929-1958.

Stallkamp, J., Schlipsing, M., Salmen, J., & Igel, C. (2012, February). Man vs. computer: Benchmarking machine learning algorithms for traffic sign recognition. Retrieved from http://www.sciencedirect.com/science/article/pii/S0893608012000457

Voelcker, J. (2014). 1.2 Billion Vehicles On World’s Roads Now, 2 Billion By 2035: Report. Retrieved from https://www.greencarreports.com/news/1093560_1-2-billion-vehicles-on-worlds-roads-now-2-billion-by-2035-report

Strongtie Insurance. (2018). What Are The Most Common Reasons for Road Accidents? Retrieved from https://www.strongtieinsurance.com/common-reasons-road-accidents/