Share:


Road traffic flow model investigation by using discrete traffic flow method

Abstract

The traffic flows are influenced by various factors. In order to determine the characteristics of traffic flows in response to changing conditions, comprehensive research that is based on the best possible methods for simulating different street situations is necessary. The article determines the influence on transport flows due to changed conditions at the end of the simulated street. It presents the dynamic of the main parameters of the traffic flow (velocity, flow and density) depending on the time of changing traffic signals and the changed traffic flow density at the last simulated street point. The results are based on a discrete, mathematical model of traffic flows. The conditions determined by theoretical investigations determine the negative changes in the dynamics of traffic flows on a simulated street.


Article in Lithuanian.


Kelių transporto srautų modelio tyrimas, taikant diskretinį transporto srautų metodą


Santrauka


Transporto priemonių srautams turi įtakos įvairūs veiksniai. Norint nustatyti transporto srautų savybes priklausomai nuo pakitusių sąlygų reikalingi išsamūs tyrimai, grindžiami kuo tikslesniais metodais imituojant įvairių situacijų gatvėse modelius. Straipsnyje nustatoma įtaka transporto srautams dėl pakitusių sąlygų modeliuojamos gatvės pabaigoje. Pateikiama transporto srautų pagrindinių parametrų (greičio, eismo intensyvumo ir koncentracijos) dinamika priklausomai nuo šviesoforų signalų perjungimo laiko ir pakitusios transporto srauto koncentracijos paskutiniame modeliuojamos gatvės taške. Rezultatams gauti taikomas diskretinis transporto srautų matematinis modelis. Teoriniais tyrimais nustatytos sąlygos, lemiančios neigiamus pokyčius transporto srautų dinamikai modeliuojamame kelyje.


Reikšminiai žodžiai: greitis, koncentracija, eismo intensyvumas, diskretinis modelis, transporto srautai, šviesoforas.

Keyword : velocity, density, flow, discrete model, traffic flow, traffic light

How to Cite
Danilevičius, A., & Bogdevičius, M. (2018). Road traffic flow model investigation by using discrete traffic flow method. Mokslas – Lietuvos Ateitis / Science – Future of Lithuania, 10. https://doi.org/10.3846/mla.2018.6051
Published in Issue
Dec 21, 2018
Abstract Views
616
PDF Downloads
494
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Bogdevičius, M. ir Junevičius, R. (2014). Investigation of traffic flow dynamic processes using discrete model. Journal of KONES Powertrain and Transport, 21(4), 15-19. https://doi.org/10.5604/12314005.1130421

Cheng, R., Ge, H., & Wang, J. (2017). An extended macro traffic flow model accounting for multiple optimal velocity functions with different probabilities. Physics Letters A, 381(32), 2608-2620. https://doi.org/10.1016/j.physleta.2017.06.008

Danilevičius, A. ir Bogdevičius, M. (2017). Investigation of traffic light switching period affect for traffic flow dynamic processes using discrete model of traffic flow. TRANSBALTICA 2017. Transportation science and technology: proceedings of the 10th international scientific conference (pp. 198-205). Vilnius, Lithuania. ISSN 1877-7058. https://doi.org/10.1016/j.proeng.2017.04.365

Junevičius, R. ir Bogdevičius, M. (2009). Mathematical modelling of network traffic flow. Transport, 24(4), 333-338. https://doi.org/10.3846/1648-4142.2009.24.333-338

Redhu, P., & Siwach, V. (2018). An extended lattice model accounting for traffic jerk. Physica A, Statistical Mechanics and its Applications, 492, 1473-1480. https://doi.org/10.1016/j.physa.2017.11.074

Salcido, A., Hernandez-Zapata, E., & Carreon-Sierra, S. (2018). Exact results of 1D traffic cellular automata: The low-density behavior of the Fukui–Ishibashi model. Physica A, 494, 276-287. https://doi.org/10.1016/j.physa.2017.11.162

Smirnov, N., Kiselev, A., Nikitin, V., Silnikov, M., & Manenkova, A. (2014). Hydrodynamic traffic flow models and its application to studying traffic control effectiveness. WSEAS Transactions on Fluid Mechanics, 9, 178-186.

Sun, D., Zang, G., Zhao, M., Cheng, S., Cao, J. (2018). Stability analysis of feedforward anticipation optimal flux difference in traffic lattice hydrodynamic theory. Commun Nonlinear Sci Numer Simulat, 56, 287-295. https://doi.org/10.1016/j.cnsns.2017.08.004

Zhang, Y., Xue, Y., Shi, Y., Guo, Y., & Wei, F. (2018a). Congested traffic patterns of two-lane lattice hydrodynamic model with partial reduced lane. Physica A, 502, 135-147. https://doi.org/10.1016/j.physa.2018.02.049

Zhang, G., Sun, D., & Zhao, M. (2018b). Phase transition of a new lattice hydrodynamic model with consideration of on-ramp and off-ramp. Commun Nonlinear Sci Numer Simulat, 54, 347-355. https://doi.org/10.1016/j.cnsns.2017.06.011

Zhang, L., Finn, C., Garoni, T. M., & Gier, J. (2018c). Behaviour of traffic on a link with traffic light boundaries. Physica A, 503, 116-138. https://doi.org/10.1016/j.physa.2018.02.201