Share:


Development of planar electrodes for real-time electroporation

Abstract

In this paper the concept of planar electrodes for real-time electroporation on a microscope stage is presented and the structure is analyzed using finite element method (FEM) analysis. A multiparametric investigation of the chip topology is performed in COMSOL Multiphysics environment to define the configuration of electrodes, electric field distribution and other electroporation parameters to ensure a homogeneous cell exposure. Based on the simulation results, an optimal electrode configuration, which is suitable for the investigation of the permeabilization thresholds during electroporation, is proposed.


Article in English.


Planariųjų elektrodų modelis realiojo laiko elektroporacijos tyrimams


Santrauka


Šiame straipsnyje pristatomas planariųjų elektrodų, skirtų realiojo laiko elektroporacijos tyrimams, ant mikroskopo objektinio staliuko baigtinių elementų modelis. Pasiūlytas daugiaparametrio elektrodų lusto topologijos tyrimas atliekamas „COMSOL Multiphysics“ aplinkoje, siekiant nustatyti tinkamą elektrodų konfigūraciją, elektrinio lauko pasiskirstymą ir kitus elektroporacijos parametrus, kuriems esant būtų užtikrintas tolygus ląstelių poveikis. Remiantis modeliavimo rezultatais, siūloma optimali elektrodų konfigūracija, kuri užtikrina pakankamą permeabilizacijos slenkstinę įtampą elektroporacijos tyrimų metu.


Reikšminiai žodžiai: elektroporacija, permeabilizacija, elektrinis laukas, planarieji elektrodai, COMSOL modelis, modeliavimas.

Keyword : electroporation, electropermeabilization, electric field, planar electrodes, COMSOL model, simulation

How to Cite
Butkus, P. (2018). Development of planar electrodes for real-time electroporation. Mokslas – Lietuvos Ateitis / Science – Future of Lithuania, 10. https://doi.org/10.3846/mla.2018.3084
Published in Issue
Oct 9, 2018
Abstract Views
678
PDF Downloads
571
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Batista Napotnik, T., & Miklavčič, D. (2018). In vitro electroporation detection methods – an overview. Bioelectrochemistry, 120, 166-182. https://doi.org/10.1016/j.bioelechem.2017.12.005

Bennett, W. F. D., Sapay, N., & Tieleman, D. P. (2014). Atomistic simulations of pore formation and closure in lipid bilayers. Biophysical Journal, 106(1), 210-219. https://doi.org/10.1016/j.bpj.2013.11.4486

Denzi, A., Merla, C., Palego, C., Paffi, A., Ning, Y., Multari, C. R., … & Liberti, M. (2015). Assessment of cytoplasm conductivity by nanosecond pulsed electric fields. IEEE Transactions on Biomedical Engineering, 62(6), 1595-1603. https://doi.org/10.1109/TBME.2015.2399250

Flisar, K., Puc, M., Kotnik, T., & Miklavcic, D. (2003). Cell membrane electropermeabilization with arbitrary pulse waveforms. IEEE Engineering in Medicine and Biology Magazine, 22(1), 77-81. https://doi.org/10.1109/MEMB.2003.1191453

Geng, T., & Lu, C. (2013). Microfluidic electroporation for cellular analysis and delivery. Lab Chip, 13(19), 3803-3821. https://doi.org/10.1039/C3LC50566A

Krassowska, W., & Filev, P. D. (2007). Modeling electroporation in a single cell. Biophysical Journal, 92(2), 404-417. https://doi.org/10.1529/biophysj.106.094235

Li, Y., Wu, M., Zhao, D., Wei, Z., Zhong, W., Wang, X., … & Li, Z. (2015). Electroporation on microchips: the harmful effects of pH changes and scaling down. Scientific Reports, 5, 17 817. https://doi.org/10.1038/srep17817

Novickij, V., Girkontaite, I., Grainys, A., Zinkevičiene, A., Lastauskiene, E., Švediene, J., … & Novickij, J. (2016). Measurement of transient permeability of Sp2/0 myeloma cells: flow cytometric study. Measurement Science Review, 16(6), 300-304. https://doi.org/10.1515/msr-2016-0038

Novickij, V., Tabasnikov, A., Smith, S., Grainys, A., & Novickij, J. (2015). Analysis of planar circular interdigitated electrodes for electroporation. IETE Technical Review (Institution of Electronics and Telecommunication Engineers, India), 32(3), 196-203. https://doi.org/10.1080/02564602.2014.1000982

Novickij, V., Tabašnikov, A., Smith, S., Grainys, A., Novickij, J., Tolvaišienė, S., & Markovskaja, S. (2017). Feasibility of parylene coating for planar electroporation copper electrodes. Medziagotyra, 23(2), 93-97. https://doi.org/10.5755/j01.ms.23.2.14953

Pucihar, G., Krmelj, J., Reberšek, M., Napotnik, T. B., & Miklavčič, D. (2011). Equivalent pulse parameters for electroporation. IEEE Transactions on Biomedical Engineering, 58(11), 3279-3288. https://doi.org/10.1109/TBME.2011.2167232

Rebersek, M., & Miklavcic, D. (2011). Advantages and disadvantages of different concepts of electroporation pulse generation. ATKAFF, 52(1), 11-19. https://doi.org/10.1080/00051144.2011.11828399

Schoenbach, K. H., Beebe, S. J., & Buescher, E. S. (2001). Intracellular effect of ultrashort electrical pulses. Bioelectromagnetics, 22(6), 440-448. https://doi.org/10.1002/bem.71

Sundararajan, R. (2009). Nanosecond electroporation: another look. Molecular Biotechnology, 41(1), 69-82. https://doi.org/10.1007/s12033-008-9107-y

Xiao, D., Yao, C., Liu, H., Li, C., Cheng, J., Guo, F., & Tang, L. (2013). Irreversible electroporation and apoptosis in human liver cancer cells induced by nanosecond electric pulses. Bioelectromagnetics, 34(7), 512-520. https://doi.org/10.1002/bem.21796