Optimization of biogas production from Phragmites australis using first-order kinetic models

DOI: https://doi.org/10.3846/mla.2025.23954

Abstract

This study investigates the viability of Phragmites australis, commonly known as the common reed, as a sustainable feedstock for biogas production, emphasizing the effectiveness of pretreatment techniques to enhance biogas production. Given the invasive nature of Phragmites australis, the utilization of its biomass not only addresses environmental management challenges but also contributes to renewable energy solutions. The key objective is to evaluate mechanical and thermal pretreatment techniques on the anaerobic digestion performance of Phragmites australis using the first-order kinetic model biogas’ cumulative production and volatile solids (VS) degradation were estimated. Sensitivity analysis was used to assess how different degradation rate constants and final biogas yield affected the efficiency of biogas generation. The degradation of VS was significantly accelerated by higher temperatures and finer particle sizes. Results indicate that both mechanical and thermal pretreatment significantly enhance biogas yield and degradation rates, milling (<1 cm) and moderate thermal treatment (100 °C, 2 h) providing optimal results. These studies highlight that the selection of appropriate pretreatment methods should be based on their sustainability and effectiveness in terms of reducing energy consumption and environmental impact.

Article in English.

Biodujų gamybos iš phragmites australis optimizavimas, taikant pirmojo laipsnio kinetinius modelius

Santrauka

Šiame darbe tiriamas paprastosios nendrės Phragmites australis panaudojimas biodujų gamybai. Darbe vertinami optimalūs derliaus nuėmimo laikotarpiai bei veiksmingi pirminio apdorojimo metodai, siekiant maksimaliai padidinti metano išeigą. Atsižvelgiant į invazinį Phragmites australis pobūdį, jos biomasės naudojimas ne tik sprendžia su aplinkos taršos mažinimu susijusius iššūkius, bet ir prisideda prie atsinaujinančios energijos gamybos. Šiame tyrime taikomas pirmo laipsnio kinetinis metodas, siekiant ištirti mechaninio ir terminio apdorojimo poveikį Phragmites australis anaerobiniam apdorojimui. Taikant pirmo laipsnio kinetinį modelį buvo įvertinta kumuliatyvinė biodujų išeiga ir lakiųjų kietųjų dalelių (VS) skaidymas. Jautrumo analize buvo įvertinta, kaip skirtingos skilimo greičio konstantos ir galutinis biodujų kiekis paveikė biodujų gamybos efektyvumą. Rezultatai rodo, kad tiek mechaninis, tiek terminis pirminis apdorojimas žymiai padidina biodujų išeigą ir VS skilimo greitį, o malimas ir vidutinis terminis apdorojimas (100 °C, 2 val.) užtikrina optimalius biodujų išeigos rezultatus.

Reikšminiai žodžiai: anaerobinis skaidymas, biodujos, pirminis apdorojimas, Phragmites australis, kinetika.

Keywords:

anaerobic digestion, biogas, pretreatment, Phragmites australis, kinetics

How to Cite

Kazizova, Z., & Zagorskis, A. (2025). Optimization of biogas production from Phragmites australis using first-order kinetic models. Mokslas – Lietuvos ateitis / Science – Future of Lithuania, 17. https://doi.org/10.3846/mla.2025.23954

Share

Published in Issue
September 10, 2025
Abstract Views
75

References

Al-Iraqi, A. R., Gandhi, B. P., Folkard, A. M., Barker, P. A., & Semple, K. T. (2024). Determine the optimal parameters for biogas production from common reed (Phragmites australis). Bioenergy Research, 17, 1302–1314. https://doi.org/10.1007/s12155-023-10699-z

Anika, O. C., Akin-Osanaiye, B. C., Asikong, E. B., & Edet, U. O. (2019). The potential of biogas production from fruit wastes (Watermelon, Mango, and Pawpaw). World Journal of Advanced Research and Reviews, 1(3), 052–065. https://doi.org/10.30574/wjarr.2019.1.3.0026

Anukam, A., Mohammadi, A., Naqvi, M., & Granström, K. (2019). A review of the chemistry of anaerobic digestion: Methods of accelerating and optimizing process efficiency. Processes, 7(8), Article 504. https://doi.org/10.3390/PR7080504

Arifan, F., Abdullah, A., & Sumardiono, S. (2021). Kinetic study of biogas production from animal manure and organic waste in Semarang city by using anaerobic digestion method. Indonesian Journal of Chemistry, 21(5), 1221–1230. https://doi.org/10.22146/IJC.65056

Bhatt, A. H., & Tao, L. (2020). Economic perspectives of biogas production via anaerobic digestion. Bioengineering, 7(3), 1–19. https://doi.org/10.3390/bioengineering7030074

Duan, J., Cao, G., Ma, G., & Yazdani, B. (2025). Boosting biogas production through innovative data-driven modeling and optimization methods at NJWTP. Scientific Reports, 15(1), Article 4814. https://doi.org/10.1038/s41598-025-88337-1

Etuwe, C. N., Momoh, Y. O. L., & Iyagba, E. T. (2016). Development of Mathematical Models and Application of the Modified Gompertz Model for Designing Batch Biogas Reactors. Waste and Biomass Valorization, 7(3), 543–550. https://doi.org/10.1007/s12649-016-9482-8

Gelosia, M., Ingles, D., Pompili, E., D’Antonio, S., Cavalaglio, G., Petrozzi, A., & Coccia, V. (2017). Fractionation of lignocellulosic residues coupling steam explosion and organosolv treatments using green solvent γ-valerolactone. Energies, 10(9), Article 1264. https://doi.org/10.3390/en10091264

Guo, X., & Wang, J. (2024). The Gompertz model for biohydrogen production kinetics: Origin, application and solving methods. International Journal of Hydrogen Energy, 88, 242–250. https://doi.org/10.1016/j.ijhydene.2024.09.200

Hansson, P. A., & Fredriksson, H. (2004). Use of summer harvested common reed (Phragmites australis) as nutrient source for organic crop production in Sweden. Agriculture, Ecosystems and Environment, 102(3), 365–375. https://doi.org/10.1016/j.agee.2003.08.005

Huiliñir, C., & Villegas, M. (2014). Biodrying of pulp and paper secondary sludge: Kinetics of volatile solids biodegradation. Bioresource Technology, 157, 206–213. https://doi.org/10.1016/j.biortech.2014.01.109

Karthikeyan, P. K., Bandulasena, H. C. H., & Radu, T. (2024). A comparative analysis of pre-treatment technologies for enhanced biogas production from anaerobic digestion of lignocellulosic waste. Industrial crops and products, 215, Article 118591. https://doi.org/10.1016/j.indcrop.2024.118591

Kavan Kumar, V., Mahendiran, R., Subramanian, P., Karthikeyan, S., Surendrakumar, A., Kumargouda, V., Ravi, Y., Choudhary, S., Singh, R., & Verma, A. K. (2023). Optimization of biogas potential using kinetic models, response surface methodology, and instrumental evidence for biodegradation of tannery fleshings during anaerobic digestion. Open Life Sciences, 18(1), Article 20220721. https://doi.org/10.1515/biol-2022-0721

Makaj Yai Chol, M., Maguu Muchuka, N., & Nyaanga, D. (2022). Effect of cow dung to maize silage mix ratios and temperature variation on biogas production in laboratory batch digester. Journal of Energy, Environmental & Chemical Engineering, 7(2), 36–47. https://doi.org/10.11648/j.jeece.20220702.13

Murillo-Roos, M., Uribe-Lorío, L., Fuentes-Schweizer, P., Vidaurre-Barahona, D., Brenes-Guillén, L., Jiménez, I., Arguedas, T., Liao, W., & Uribe, L. (2022). Biogas production and microbial communities of mesophilic and thermophilic anaerobic co-digestion of animal manures and food wastes in Costa Rica. Energies, 15(9), Article 3252. https://doi.org/10.3390/en15093252

Naugžemys, D., Lambertini, C., Patamsytė, J., Butkuvienė, J., Khasdan, V., & Žvingila, D. (2021). Genetic diversity patterns in Phragmites australis populations in straightened and in natural river sites in Lithuania. Hydrobiologia, 848(14), 3317–3330. https://doi.org/10.1007/s10750-021-04606-w

Pelegrin, J., & Holzem, R. M. (n.d.). Evaluating the impacts of Phragmites australis pretreatment methods on biogas and methane.

Peng, M. Q., Chen, T. H., Jin, T., Su, Y. C., Luo, S. T., & Xu, H. (2024). A novel first-order kinetic model for simultaneous anaerobic–aerobic degradation of municipal solid waste in landfills. Processes, 12(10), Article 2225. https://doi.org/10.3390/pr12102225

Roj-Rojewski, S., Wysocka-Czubaszek, A., Czubaszek, R., Kamocki, A., & Banaszuk, P. (2019). Anaerobic digestion of wetland biomass from conservation management for biogas production. Biomass and Bioenergy, 122, 126–132. https://doi.org/10.1016/j.biombioe.2019.01.038

Tian, Y., Yang, K., Zheng, L., Han, X., Xu, Y., Li, Y., Li, S., Xu, X., Zhang, H., & Zhao, L. (2020). Modelling biogas production kinetics of various heavy metals exposed anaerobic fermentation process using sigmoidal growth functions. Waste and Biomass Valorization, 11(9), 4837–4848. https://doi.org/10.1007/s12649-019-00810-x

Uddin, M. M., & Wright, M. M. (2023). Anaerobic digestion fundamentals, challenges, and technological advances. Physical Sciences Reviews, 8(9), 2819–2837. https://doi.org/10.1515/psr-2021-0068

Vasmara, C., Galletti, S., Cianchetta, S., & Ceotto, E. (2023). Advancements in giant reed (Arundo donax L.) biomass pre-treatments for biogas production: A review. Energies, 16(2), Article 949. https://doi.org/10.3390/en16020949

Yu, L., & Wensel, P. C. (2013). Mathematical modeling in Anaerobic Digestion (AD). Journal of Bioremediation & Biodegradation, S4, Article 003. https://doi.org/10.4172/2155-6199.s4-003

View article in other formats

CrossMark check

CrossMark logo

Published

2025-09-10

Issue

Section

Environmental Engineering / Aplinkos inžinerija

How to Cite

Kazizova, Z., & Zagorskis, A. (2025). Optimization of biogas production from Phragmites australis using first-order kinetic models. Mokslas – Lietuvos ateitis / Science – Future of Lithuania, 17. https://doi.org/10.3846/mla.2025.23954

Share