Evaluating the integration of apartment building heating systems with low-temperature district heating networks
DOI: https://doi.org/10.3846/mla.2025.23939Abstract
Any renovation of apartment buildings by replacing or keeping their heating devices usually means that high temperatures of the heat carrier are maintained, which restricts boosting the efficiency of a central heating supply system. This also limits the scope for a switch to more efficient systems such as low-temperature district heating systems. To assess the impact of reducing the heat carrier temperature on indoor heating with a constant radiator area, the article investigates several alternatives alongside a base case scenario. In one scenario, the modernization of a building is examined, either by retaining the current heating devices or by substituting them with devices of equal size. Another scenario explores the modernization of a building by exchanging the heating devices and adjusting the building’s heating system to accommodate ultra-low temperatures. The possibility to reduce the temperature of the heat carrier in the heating system without any renovation of the building has been addressed as well. This led to seven alternatives. The analysis of the hourly data of the heating system model for two typical months in a heating season has revealed that when the building retains its existing area of heating devices post-renovation, the temperature can be brought down to 60/40/20 °C. It was also discovered that lowering the heat transfer temperature to ultra-low parameters (45/25/20 °C) cannot be achieved by refurbishing the buildings without increasing the number of radiators, as the heating devices will fail to deliver adequate heat for space heating.
Article in English.
Daugiabučių namų šildymo sistemų integravimo į žemos temperatūros centralizuoto šilumos tiekimo tinklus vertinimas
Santrauka
Daugiabučių namų renovacija, keičiant ar paliekant jų šildymo prietaisus, paprastai reiškia, kad reikia išlaikyti aukštą šilumnešio temperatūrą, o tai riboja centralizuoto šilumos tiekimo (CŠT) sistemos efektyvumo didinimą. Be to, tai apriboja galimybę pereiti prie efektyvesnių sistemų, pavyzdžiui, žematemperatūrių CŠT sistemų. Siekiant įvertinti sumažintos šilumnešio temperatūros poveikį patalpoms šildyti, kai radiatorių plotas išlieka pastovus, straipsnyje išnagrinėtos kelios alternatyvos ir bazinis scenarijus. Pagal vieną scenarijų nagrinėjamas pastato modernizavimas, paliekant esamus šildymo prietaisus arba pakeičiant juos tokio pat dydžio prietaisais. Pagal kitą scenarijų nagrinėjamas pastato modernizavimas pakeičiant šildymo prietaisus ir pritaikant pastato šildymo sistemą itin žemai temperatūrai. Taip pat nagrinėta galimybė sumažinti šilumnešio temperatūrą šildymo sistemoje neatnaujinant pastato. Tai leido parengti septynias alternatyvas. Išanalizavus šildymo sistemos modelio valandinius dviejų tipinių šildymo sezono mėnesių duomenis paaiškėjo, kad, po renovacijos pastate išlaikant esamą šildymo prietaisų plotą, temperatūrą galima sumažinti iki 60/40/20 °C. Taip pat nustatyta, kad renovuojant pastatus neįmanoma sumažinti šilumos perdavimo temperatūros iki itin žemų parametrų (45/25/20 °C) nekeičiant esamo radiatorių skaičiaus, nes šildymo prietaisai nesugebės tiekti pakankamai šilumos patalpoms šildyti.
Reikšminiai žodžiai: centralizuotas šilumos tiekimas (CŠT), pastatų modernizavimas, šildymo sistema, žema temperatūra.
Keywords:
district heating (DH), building modernization, heating system, low-temperatureHow to Cite
Share
License
Copyright (c) 2025 The Author(s). Published by Vilnius Gediminas Technical University.
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Abokersh, M. H., Saikia, K., Cabeza, L. F., Boer, D., & Vallès, M. (2020). Flexible heat pump integration to improve sustainable transition toward 4th generation district heating. Energy Conversion and Management, 225, Article 113379. https://doi.org/10.1016/j.enconman.2020.113379
Arabkoohsar, A., & Alsagri, A. (2019). A new generation of district heating system with neighborhood-scale heat pumps and advanced pipes, a solution for future renewable-based energy systems. Energy, 193, Article 116781. https://doi.org/10.1016/j.energy.2019.116781
Aukščiausioji audito institucija. (2022). Centralizuoto šilumos tiekimo vertinimas 2022. https://www.lrs.lt/sip/getfile?guid=7660babb-bcab-4f15-b821-d8ac4802dc3d
Buffa, S., Cozzini, M., D’Antoni, M., Baratieri, M., & Fedrizzi, R. (2019). 5th generation district heating and cooling systems: A review of existing cases in Europe. Renewable and Sustainable Energy Reviews, 104, 504–522. https://doi.org/10.1016/j.rser.2018.12.059
Elhafaia, M. H., Nova-Rincon, A., Sochard, S., Serra, S., & Reneaume, J. M. (2023). Optimization of the pipe diameters and the dynamic operation of a district heating network. In 36th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems, ECOS 2023 (pp. 2423–2434), Las Palmas de Gran Canaria, Spain. https://doi.org/10.52202/069564-0218
Krikser, T., Profeta, A., Grimm, S., & Huther, H. (2020). Willingness-to-pay for district heating from renewables of private households in Germany. Sustainability, 12(10), Article 4129. https://doi.org/10.3390/su12104129
Kutzner, S., Heberle, F., & Brüggemann, D. (2022). Thermo-economic analysis of near-surface geothermal energy considering heat and cold supply within a low-temperature district heating network. Processes, 10(2), Article 421. https://doi.org/10.3390/pr10020421
Lukoševičius, V. (2024). Kas lemia centrinio šildymo kainas? Kas galėtų jas sumažinti? Šiluminė technika, 2(91), 28–31.
Lund, H., Østergaard, P. A., Chang, M., Werner, S., Svendsen, S., Sorknæs, P., Thorsen, J. E., Hvelplund, F., Mortensen, B. O. G., Mathiesen, B. V., Bojesen, C., Duic, N., Zhang, X., & Möller, B. (2018). The status of 4th generation district heating: Research and results. Energy, 164, 147–159. https://doi.org/10.1016/j.energy.2018.08.206
Lund, H., Østergaard, P. A., Nielsen, T. B., Werner, S., Thorsen, J. E., Gudmundsson, O., Arabkoohsar, A., & Mathiesen, B. V. (2021). Perspectives on fourth and fifth generation district heating. Energy, 227, Article 120520. https://doi.org/10.1016/j.energy.2021.120520
Mateu-Royo, C., Sawalha, S., Mota-Babiloni, A., & Navarro-Esbrí, J. (2020). High temperature heat pump integration into district heating network. Energy Conversion and Management, 210, Artice 112719. https://doi.org/10.1016/j.enconman.2020.112719
Mazhar, A. R., Liu, S., & Shukla, A. (2018). A state of art review on the district heating systems. Renewable and Sustainable Energy Reviews, 96, 420–439. https://doi.org/10.1016/j.rser.2018.08.005
Østergaard, D. S., & Svendsen, S. (2016). Theoretical overview of heating power and necessary heating supply temperatures in typical Danish single-family houses from the 1900s. Energy and Buildings, 126, 375–383. https://doi.org/10.1016/j.enbuild.2016.05.034
Paardekooper, S. (2018). Heat roadmap Europe 4: Quantifying the impact of low-carbon heating and cooling roadmaps. Aalborg Universitetsforlag.
Parliament of the Republic of Lithuania. (2024). National energy policy strategy for energy independence.
Persson, U., & Werner, S. (2011). Heat distribution and the future competitiveness of district heating. Applied Energy, 88(3), 568–576. https://doi.org/10.1016/j.apenergy.2010.09.020
Pompei, L., Mannhardt, J., Nardecchia, F., Pastore, L. M., & de Santoli, L. (2022). A different approach to develop a district heating grid based on the optimization of building clusters. Processes, 10(8), Article 1575. https://doi.org/10.3390/pr10081575
Popovski, E., Aydemir, A., Fleiter, T., Bellstädt, D., Büchele, R., & Steinbach, J. (2019). The role and costs of large-scale heat pumps in decarbonising existing district heating networks – a case study for the city of Herten in Germany. Energy, 180, 918–933. https://doi.org/10.1016/j.energy.2019.05.122
Potočnik, P., Strmčnik, E., & Govekar, E. (2015). Linear and neural network-based models for short-term heat load forecasting. Strojniški vestnik – Journal of Mechanical Engineering, 61(9), 543–550. https://doi.org/10.5545/sv-jme.2015.2548
Purmo. (2025). Purmo radiators. https://www.purmo.com/lt/gaminiai/ploksciu-radiatoriai/purmo-compact.htm#tab-pagrindines-specifikacijos
Rugieniūtė, E., & Bielskus, J. (2024). Possibilities of applying a low-temperature centralized heat supply network in a multi-apartment building district. Mokslas – Lietuvos ateitis, 16, 1–8. https://doi.org/10.3846/mla.2024.21317
Sporleder, M., Rath, M., & Ragwitz, M. (2024). Solar thermal vs. PV with a heat pump: A comparison of different charging technologies for seasonal storage systems in district heating networks. Energy Conversion and Management: X, 22, Artice 100564. https://doi.org/10.1016/j.ecmx.2024.100564
The Lithuanian District Heating Association. (2024). Lietuvos centralizuoto šilumos tiekimo sektoriaus 2023 metų apžvalga. Šiluminė technika, 2(2), 3–20.
Tol, H. İ., & Madessa, H. B. (2024). Return-temperature reduction at district heating systems: Focus on end-user sites. Energies, 17(19), Article 4901. https://doi.org/10.3390/en17194901
Volkova, A., Koduvere, H., & Pieper, H. (2022). Large-scale heat pumps for district heating systems in the Baltics: Potential and impact. Renewable and Sustainable Energy Reviews, 167, Article 112749. https://doi.org/10.1016/j.rser.2022.112749
Wahi, P., Konstantinou, T., Tenpierik, M. J., & Visscher, H. (2023). Lower temperature heating integration in the residential building stock: A review of decision-making parameters for lower-temperature-ready energy renovations. Journal of Building Engineering, 65, Article 105811. https://doi.org/10.1016/j.jobe.2022.105811
Wahi, P., Konstantinou, T., Visscher, H., & Tenpierik, M. J. (2024). Evaluating building-level parameters for lower-temperature heating readiness: A sampling-based approach to addressing the heterogeneity of Dutch housing stock. Energy and Buildings, 322, Article 114703. https://doi.org/10.1016/j.enbuild.2024.114703
Werner, S. (2017). International review of district heating and cooling. Energy, 137, 617–631. https://doi.org/10.1016/j.energy.2017.04.045
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2025 The Author(s). Published by Vilnius Gediminas Technical University.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.