Detection of pneumonia from chest X-rays using convolutional neural networks
DOI: https://doi.org/10.3846/mla.2025.23905Abstract
Pneumonia detection from chest X-rays is crucial for early diagnosis, and deep learning models –specifically convolutional neural networks (CNNs) – have shown promise in automating this process. In this study, a CNN using the DenseNet-121 architecture was developed and trained, referred to as LDCS2, to classify chest X-ray images as pneumonia or normal, using a combined dataset from three publicly available sources. The CNN approach was chosen over Vision Transformers (ViT) due to lower computational requirements and better performance with limited data. A traditional training, validation, and testing split was used instead of k-fold cross-validation to reduce execution time. LDCS2 demonstrated excellent discrimination between pneumonia and normal images alongside high computational efficiency. These findings highlight the potential of DenseNet-based CNNs for automated pneumonia diagnosis, particularly in resource-constrained settings.
Article in English.
Pneumonijos nustatymas iš krūtinės ląstos rentgenogramų, naudojant konvoliucinius neuroninius tinklus
Santrauka
Pneumonijos nustatymas iš krūtinės ląstos rentgenogramų yra itin svarbus ankstyvajai diagnostikai, o giliojo mokymosi modeliai – ypač konvoliuciniai neuroniniai tinklai (CNN) – rodo didelį potencialą automatizuojant šį procesą. Šiame tyrime sukurtas ir apmokytas CNN, paremtas DenseNet-121 architektūra ir pavadintas LDCS2, skirtas klasifikuoti krūtinės ląstos rentgeno vaizdams, iš kurių matyti pneumonija arba sveiki plaučiai, naudojant sujungtą duomenų rinkinį iš trijų viešai prieinamų šaltinių. CNN metodas pasirinktas vietoje Vision Transformers (ViT) dėl mažesnių skaičiavimo išteklių reikalavimų ir geresnių rezultatų, kai duomenų kiekis ribotas. Siekiant sutrumpinti vykdymo laiką, vietoje k kartų kryžminės validacijos taikytas tradicinis mokymo, validacijos ir testavimo skaidymas. LDCS2 pademonstravo puikią atskyrimo gebą tarp pneumonijos ir sveikų plaučių vaizdų bei aukštą skaičiavimo efektyvumą. Šie rezultatai pabrėžia DenseNet pagrindu veikiančių CNN potencialą automatizuotai plaučių uždegimo diagnostikai, ypač išteklių stokojančiose aplinkose.
Reikšminiai žodžiai: LDCS2, konvoliuciniai neuroniniai tinklai (CNN), krūtinės ląstos rentgeno vaizdų klasifikavimas, pneumonijos aptikimas, DenseNet-121, medicininis vaizdavimas, gilusis mokymasis sveikatos priežiūros srityje, duomenų augmentacija, perkėliminis mokymasis.
Keywords:
LDCS2, Convolutional Neural Networks (CNNs), chest X-ray classification, pneumonia detection, DenseNet-121, medical imaging, deep learning in healthcare, data augmentation, transfer learningHow to Cite
Share
License
Copyright (c) 2025 The Author(s). Published by Vilnius Gediminas Technical University.
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Abbas, A., Abdelsamea, M. M., & Gaber, M. M. (2020). Classification of COVID-19 in chest X-ray images using DeTraC deep convolutional neural network. Applied Intelligence, 51, 854–864. https://doi.org/10.1007/s10489-020-01829-7
Albahli, S., & Yar, G. N. A. H. (2021). Fast and accurate detection of COVID-19 along with 14 other chest pathologies using a multi-level classification: Algorithm development and validation study. Journal of Medical Internet Research, 23(6), Article e23693. https://doi.org/10.2196/23693
Das, A. K., Ghosh, S., Thunder, S., Dutta, R., Agarwal, S., & Chakrabarti, A. (2021). Automatic COVID-19 detection from X-ray images using ensemble learning with convolutional neural network. Pattern Analysis and Applications, 24, 1111–1124. https://doi.org/10.1007/s10044-021-00970-4
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N. (2021). An image is worth 16×16 words: Transformers for image recognition at scale. ArXiv. https://doi.org/10.48550/arXiv.2010.11929
Elshazly, H., Linse, C., Barth, E., & Martinetz, T. (2020). Explainable COVID-19 detection using chest X-rays and transfer learning. ArXiv. https://doi.org/10.48550/arXiv.2012.04833
Han, K., Wang, Y., Chen, H., Chen, X., Guo, J., & Liu, Z. (2022). A survey on vision transformer. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(1), 87–110. https://doi.org/10.1109/TPAMI.2022.3152247
Hassantabar, S., Ahmadi, M., & Sharifi, A. (2020). Diagnosis and detection of infected tissue of COVID-19 patients based on lung x-ray image using convolutional neural network approaches. Chaos, Solitons & Fractals, 140, Article 110170. https://doi.org/10.1016/j.chaos.2020.110170
Ibrahim, D. M., Elshennawy, N. M., & Sarhan, A. M. (2021). Deep-chest: Multi-classification deep learning model for diagnosing COVID-19, pneumonia, and lung cancer chest diseases. Computers in Biology and Medicine, 132, Article 104348. https://doi.org/10.1016/j.compbiomed.2021.104348
Irmak, E. (2021). COVID-19 disease severity assessment using CNN model. IET Image Processing, 15(8), 1814–1824. https://doi.org/10.1049/ipr2.12153
Irvin, J., Rajpurkar, P., Ko, M., Yu, Y., Ciurea-Ilcus, S., Chute, C., Marklund, H., Haghgoo, B., Ball, R., Shpanskaya, K., Seekins, J., Mong, D. A., Halabi, S. S., Sandberg, J. K., Jones, R., Larson, D. B., Langlotz, C. P., Patel, B. N., Lungren, M. P., & Ng, A. Y. (2019). CheXpert: A large chest radiograph dataset with uncertainty labels and expert comparison. Proceedings of the AAAI Conference on Artificial Intelligence, 33(1), 590–597. https://doi.org/10.1609/aaai.v33i01.3301590
Ismael, A. M., & Şengür, A. (2021). Deep learning approaches for COVID-19 detection based on chest X-ray images. Expert Systems with Applications, 164, Article 114054. https://doi.org/10.1016/j.eswa.2020.114054
Katz, S. E., & Williams, D. J. (2018). Pediatric community-acquired pneumonia in the United States: Changing epidemiology, diagnostic and therapeutic challenges, and areas for future research. Infectious Disease Clinics of North America, 32(1), 47–63. https://doi.org/10.1016/j.idc.2017.11.002
Mooney, P. (2018). Chest X-ray images (Pneumonia). https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia
Moujahid, H., Cherradi, B., El Gannour, O., Bahatti, L., Terrada, O., & Hamida, S. (2020). Convolutional neural network-based classification of pneumonia from chest X-ray images. African Journal of Science, Technology, Innovation and Development, 12(4), 499–506. https://doi.org/10.25046/aj050522
Podder, P., Bhattacharjee, S., & Roy, A. (2021). An efficient method of detection of COVID-19 using Mask R-CNN on chest X-ray images. AIMS Biophysics, 8(3), 281–290. https://doi.org/10.3934/biophy.2021022
Rahman, M. M., Nooruddin, S., Hasan, K. M. A., & Dey, N. K. (2021a). HOG + CNN Net: Diagnosing COVID-19 and pneumonia by deep neural network from chest X-ray images. SN Computer Science, 2, Article 371. https://doi.org/10.1007/s42979-021-00762-x
Rahman, T., Khandakar, A., Qiblawey, Y., Tahir, A., Kiranyaz, S., Kashem, S. I., Chowdhury, M. E. H., Al-Maadeed, S., Zughaier, S. M., & Khan, M. S. (2021). Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images. Computers in Biology and Medicine, 132, Article 104319. https://doi.org/10.1016/j.compbiomed.2021.104319
Rajpurkar, P., Irvin, J., Ball, R. L., Zhu, K., Yang, B., Mehta, H., Duan, T., Ding, D. Y., Bagul, A., Langlotz, C. P., Patel, B. N., Yeung, S. Y., & Ng, A. Y. (2018). Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLoS Medicine, 15(11), Article e1002686. https://doi.org/10.1371/journal.pmed.1002686
Rajpurkar, P., Irvin, J., Zhu, K., Yang, B., Mehta, H., Duan, T., Ding, D. Y., Bagul, A., Langlotz, C., Shpanskaya, K., Lungren, M. P., & Ng, A. Y. (2017). CheXNet: Radiologist-level pneumonia detection on chest X-rays with deep learning. ArXiv. https://doi.org/10.48550/arXiv.1711.05225
Roberts, M., Driggs, D., Thorpe, M., Gilbey, J., Yeung, T., Ursprung, S., Aviles-Rivero, A. I., Etmann, C., McCague, C., Beer, L., Weir-McCall, J. R., Teng, Z., Gkrania-Klotsas, E., AIX-COVNET, Rudd, J. H. F., Sala, E., & Schönlieb, C.-B. (2021). Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans. Nature Machine Intelligence, 3(3), 199–217. https://doi.org/10.1038/s42256-021-00307-0
Rudin, C. (2019). Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence, 1, 206–215. https://doi.org/10.1038/s42256-019-0048-x
Sahiner, B., Pezeshk, A., Hadjiiski, L. M., Wang, X., Drukker, K., Cha, K. H., Summers, R. M., & Giger, M. L. (2019). Deep learning in medical imaging and radiation therapy. Medical Physics, 46(1), e1–e36. https://doi.org/10.1002/mp.13264
Sait, U., KV, G. L., Prajapati, S. P., Bhaumik, R., Kumar, T., Shivakumar, S., & Bhalla, K. (2022). Curated dataset for COVID-19 posterior-anterior chest radiography images (X-Rays). https://doi.org/10.17632/9xkhgts2s6.4
Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2017). Grad-CAM: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision (pp. 618–626). IEEE. https://doi.org/10.1109/ICCV.2017.74
Shamshad, F., Khan, S., Zamir, S. W., Khan, M. H., Hayat, M., Khan, F. S., & Fu, H. (2023). Transformers in medical imaging: A survey. Medical Image Analysis, 88, Article 102802. https://doi.org/10.1016/j.media.2023.102802
Shorten, C., & Khoshgoftaar, T. M. (2019). A survey on image data augmentation for deep learning. Journal of Big Data, 6(1), Article 60. https://doi.org/10.1186/s40537-019-0197-0
Tan, M., & Le, Q. V. (2019). EfficientNet: Rethinking model scaling for convolutional neural networks. Proceedings of the International Conference on Machine Learning (pp. 6105–6114). https://doi.org/10.48550/arXiv.1905.11946
Vabalas, A., Gowen, E., Poliakoff, E., & Casson, A. J. (2019). Machine learning algorithm validation with a limited sample size. PLoS ONE, 14(11), Article e0224365. https://doi.org/10.1371/journal.pone.0224365
Varshni, D., Thakral, K., Agarwal, L., Nijhawan, R., & Mittal, A. (2019). Pneumonia detection using CNN based feature extraction. In 2019 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT) (pp.1–7). IEEE. https://doi.org/10.1109/ICECCT.2019.8869364
Wang, B., & Zhang, W. (2022). MARnet: Multi-scale adaptive residual neural network for chest X-ray images recognition of lung diseases. Mathematical Biosciences and Engineering, 19(1), 331–350. https://doi.org/10.3934/mbe.2022017
World Health Organization. (2022). Pneumonia. https://www.who.int/news-room/fact-sheets/detail/pneumonia
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2025 The Author(s). Published by Vilnius Gediminas Technical University.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.