Experimental research on the selected biofiltration materials under dynamic conditions


Hydrogen sulfide (H2S) is a hazardous chemical compound present in raw biogas and requires removal. Biofiltration offers an eco-friendly solution by utilizing sulfur oxidizing bacteria (SOBs) within a biofilter. This biofilter typically comprises packing material to house SOBs and facilitate desulfurization. To optimize removal efficiency (RE), the physicochemical properties of packing materials (organic/inorganic/synthetic) need evaluation. This study focused on the characteristics of sewage sludge and biochar samples produced via pyrolysis at temperatures of 400 °C, 500 °C, and 600 °C, along with cellular concrete (CLC) waste and polyurethane foam (PUF). Measurements included bulk density, pH, and electrical conductivity, with discussion on their impact on H2S purification from biogas under dynamic conditions. Ultimately, PUF, CLC waste, biochar after 600 °C pyrolysis, and sewage sludge exhibited superior performance in terms of lowest bulk density, optimal pH, and highest electrical conductivity.

Article in English.

Eksperimentinis pasirinktos biofiltracijos medžiagos tyrimas dinaminėmis sąlygomis


Vandenilio sulfidas (H2S) yra vienas iš nepageidaujamų toksiškų cheminių junginių, esančių biodujose, todėl jį reikia pašalinti. Šių dujų biofiltravimas yra aplinkai nekenksmingas būdas. Įprastą biofiltrą sudaro filtravimo medžiaga kaip sieros oksiduojančių bakterijų gyvenamoji vieta. Siekiant optimizuoti H2S pašalinimo efektyvumą, eksperimentų metu turi būti įvertinta pasirinktų organinių filtravimo medžiagų fizikinių ir cheminių savybių įtaka biofiltravimo procesui. Tyrimo metu buvo nagrinėtos svarbiausios nuotekų dumblo mėginių charakteristikos ir bioanglis (po pirolizės: 400 °C, 500 °C ir 600 °C), taip pat akytojo betono atliekos ir poliuretano putos. Filtravimo medžiagų pasirinktos frakcijos buvo: mažesnės nei 0,6 mm ir nuo 0,6 mm iki 1 mm. Atlikti matavimai apėmė tūrinį tankį, pH ir elektrinį laidumą bei buvo aptartas šių savybių poveikis H2S valymui iš biodujų.

Reikšminiai žodžiai: H2S šalinimas, biofiltravimas, pakavimo medžiagos, fizikinės ir cheminės savybės.

Keyword : H2S removal, biofiltration, packing materials, physicochemical properties

How to Cite
Mohammadi, K., & Vaiškūnaitė, R. (2024). Experimental research on the selected biofiltration materials under dynamic conditions. Mokslas – Lietuvos Ateitis / Science – Future of Lithuania, 16.
Published in Issue
May 31, 2024
Abstract Views
PDF Downloads
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Abd, A. A., & Othman, M. R. (2022). Biogas upgrading to fuel grade methane using pressure swing adsorption: Parametric sensitivity analysis on an industrial scale. Fuel, 308, Article 121986.

Aryal, N., Zhang, Y., Bajracharya, S., Pant, D., & Chen, X. (2022). Microbial electrochemical approaches of carbon dioxide utilization for biogas upgrading. Chemosphere, 291, Article 132843.

Bahraminia, S., Anbia, M., & Koohsaryan, E. (2020). Hydrogen sulfide removal from biogas using ion-exchanged nanostructured NaA zeolite for fueling solid oxide fuel cells. International Journal of Hydrogen Energy, 45(55), 31027–31040.

Das, J., Nolan, S., & Lens, P. N. L. (2022). Simultaneous removal of H2S and NH3 from raw biogas in hollow fiber membrane bioreactors. Environmental Technology & Innovation, 28, Article 102777.

Gao, Y., Han, Z., Zhai, G., Dong, J., & Pan, X. (2022). Oxidation absorption of gaseous H2S using UV/S2O82− advanced oxidation process: Performance and mechanism. Environmental Technology & Innovation, 25, Article 102124.

Huan, C., Lyu, Q., Tong, X., Li, H., Zeng, Y., Liu, Y., Jiang, X., Ji, G., Xu, L., & Yan, Z. (2021). Analyses of deodorization performance of mixotrophic biotrickling filter reactor using different industrial and agricultural wastes as packing material. Journal of Hazardous Materials, 420, Article 126608.

Jia, T., Sun, S., Zhao, Q., Peng, Y., & Zhang, L. (2022). Extremely acidic condition (pH < 1.0) as a novel strategy to achieve high-efficient hydrogen sulfide removal in biotrickling filter: Biomass accumulation, sulfur oxidation pathway and microbial analysis. Chemosphere, 294, Article 133770.

Jiao, Y., Han, S., Zhang, W., Guo, M., Cheng, F., & Zhang, M. (2022). Self-assembled CuO-bearing aerogel-like hollow Al2O3 microspheres for room temperature dry capture of H2S. Chemical Engineering Research and Design, 177, 174–183.

Juntranapaporn, J., Vikromvarasiri, N., Soralump, C., & Pisutpaisal, N. (2019). Hydrogen sulfide removal from biogas in biotrickling filter system inoculated with Paracoccus pantotrophus. International Journal of Hydrogen Energy, 44(56), 29554–29560.

Khanongnuch, R. (2019). Hydrogen sulfide removal from synthetic biogas using anoxic biofilm reactors. Université Paris-Est; Tampereen yliopisto.

Khalil, M., Berawi, M. A., Heryanto, R., & Rizalie, A. (2019). Waste to energy technology: The potential of sustainable biogas production from animal waste in Indonesia. Renewable and Sustainable Energy Reviews, 105, 323–331.

Lebrun, G., Couvert, A., & Dumont, E. (2019). H2S removal using cellular concrete waste as filtering material: Reaction’s identification and performance assessment. Journal of Environmental Chemical Engineering, 7(2), Article 102967.

Moradi, H., Azizpour, H., Bahmanyar, H., & Mohammadi, M. (2020). Molecular dynamics simulation of H2S adsorption behavior on the surface of activated carbon. Inorganic Chemistry Communications, 118, Article 108048.

Mamet, S. D., Jimmo, A., Conway, A., Teymurazyan, A., Talebitaher, A., Papandreou, Z., Chang, Y. F., Shannon, W., Peak, D., & Siciliano, S. D. (2021). Soil buffering capacity can be used to optimize biostimulation of psychrotrophic hydrocarbon remediation. Environmental Science & Technology, 55(14), 9864–9875.

Perez, T. G., Jiménez, S., H., & Revah, S. (2020). Operational parameters in H2S biofiltration under extreme acid conditions: performance, biomass control, and CO2 consumption. Environmental Science and Pollution Research, 27, 4502–4508.

Paulionytė, J., & Vaiškūnaitė, R. (2023). Research on the physical and chemical properties of sewage treatment sludge biochar and its preparation for wastewater. Science – Future of Lithuania, 15, 1–6.

Pepper, I. L., & Brusseau, M. L. (2019). Chapter 2 – Physical-chemical characteristics of soils and the subsurface. In Environmental and pollution science (3rd ed., pp. 9–22). Academic Press.

Pudi, A., Rezaei, M., Signorini, V., Andersson, M. P., Baschetti, M. G., & Mansouri, S. S. (2022). Hydrogen sulfide capture and removal technologies: A comprehensive review of recent developments and emerging trends. Separation and Purification Technology, 298, Article 121448.

Strohmaier, C., Krommweh, M. S., & Buscher, W. (2019). Suitability of different filling materials for a biofilter at a broiler fattening facility in terms of ammonia and odour reduction. Atmosphere, 11(1), Article 13.

Vaiškūnaitė, R. (2020). Using biofilter packed with different wood waste charges for purification of air contaminated with benzene. In 11th International Conference “Environmental Engineering” (pp. 1–8), Vilnius, Lithuania.

Zeng, Y., Luo, Y., Huan, C., Shuai, Y., Liu, Y., Xu, L., Ji, G., & Yan, Z. (2019). Anoxic biodesulfurization using biogas digestion slurry in biotrickling filters. Journal of Cleaner Production, 224, 88–99.