Air pollution sources and their impact on the environment
Abstract
This paper provides an overview of the various sources of air pollution and their impact on the environment and human health, distinguishing between natural and anthropogenic (man-made) sources. The study assessed the environmental impact of these sources – the overall level of air pollution, taking into account the predominant anthropo-genic source, such as emissions from vehicles and industrial activities. The important role of geographic information systems (GIS) in monitoring air pollution, performing spatial data analysis, and identifying pollution hotspots is emphasized. This method proposes to analyze the impact of the air quality result on public health and the environment. The main focus of the study is on the predominant pollutants in the atmosphere such as particulate matter (PM), nitrogen oxides (NOx), and sulfur dioxide (SO2). The object of the study was the Old Town of the city of Vilnius. A calculation model was created in the MatLab environment to determine the pollution. The results reveal trends in environmental indicators. In the Old Town, decreasing pollution levels of PM10 and CO are observed, and NO2 remained relatively constant from 2020 the month of January until 2022 December. The primary importance of environmental monitoring depends on government regulation, technological advancements, and public participation to effectively reduce air pollution and protect the environment.
Article in English.
Oro taršos šaltiniai ir jų poveikis aplinkai
Santrauka
Šiame darbe pateikiama įvairių oro taršos šaltinių ir jų poveikio aplinkai ir žmonių sveikatai apžvalga, išskiriant natūralius ir antropogeninius (žmogaus sukurtus) šaltinius. Tyrime įvertinta šių šaltinių įtaka aplinkai – bendras oro taršos lygis, atsižvelgiant į vyraujantį antropogeninį šaltinį, pvz., transporto priemonių išmetamus teršalus ir pramoninės veiklos atliekas. Pabrėžtas svarbus geografinės informacijos sistemų (GIS) vaidmuo stebint oro taršą, atliekant duomenų erdvinę analizę ir nustatant taršos židinius. Šiuo metodu siūloma analizuoti oro kokybės rezultato poveikį visuomenės sveikatai ir aplinkai. Atliekant tyrimą pagrindinis dėmesys skirtas vyraujantiems atmosferoje teršalams, tokiems kaip kietosios dalelės (PM), azoto oksidai (NOx) ir sieros dioksidas (SO2). Tyrimo objektu pasirinktas Vilniaus miesto senamiestis, taršai nustatyti sudarytas skaičiavimo modelis MatLab programos aplinkoje. Rezultatai atskleidžia aplinkosaugos rodiklių tendencijas. Senamiestyje pastebimas mažėjantis PM10 ir CO taršos lygis, o NO2 kiekis nuo 2020 m. sausio mėn. iki 2022 m. gruodžio mėn. išliko gana pastovus. Aplinkos stebėsenos svarba labiausiai priklauso nuo vyriausybės reguliavimo, technologijų pažangos ir visuomenės dalyvavimo siekiant veiksmingai sumažinti oro taršą ir apsaugoti aplinką.
Reikšminiai žodžiai: oro tarša, antropogeniniai šaltiniai, kietosios dalelės (PM), azoto oksidas (NOx), sieros dioksidas (SO2), ozonas (O₃), geografinės informacinės sistemos (GIS).
Keyword : air pollution, anthropogenic sources, particulate matter (PM), nitrogen oxides (NOx), sulfur dioxide (SO2), ozone (O₃), geographic information systems (GIS)
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Air Quality Index. (2017). What is air pollution? https://www.aqi.in/blog/what-is-air-pollution/
American Heart Association. (2023). Heart disease and stroke statistics – 2023 Update. Professional Heart Daily.
Bekesiene, S., & Meidute-Kavaliauskiene, I. (2022). Artificial neural networks for modelling and predicting urban air pollutants: Case of Lithuania. Sustainability, 14(4), Article 2470. https://doi.org/10.3390/su14042470
Bukowska, B., Mokra, K., & Michałowicz, J. (2022). Benzo[a]pyrene—Environmental occurrence, human exposure, and mechanisms of toxicity. International Journal of Molecular Sciences, 23(11), Article 6348. https://doi.org/10.3390/ijms23116348
Eljarrat, E., Li, F., Jahangir Alam, M., Stavropoulou, E., Manisalidis, I., Stavropoulos, A., & Bezirtzoglou, E. (2020). Environmental and health impacts of air pollution: A review. Frontiers in Public Health, 8, Article 14. https://doi.org/10.3389/fpubh.2020.00014
Environmental Protection Agency. (n.d.). Summary of the status of the environment in Lithuania. Retrieved February 25, 2024, from https://gamta.lt/
Gould, G. S., Hurst, J. R., Trofor, A., Alison, J. A., Fox, G., Kulkarni, M. M., Wheelock, C. E., Clarke, M., & Kumar, R. (2023). Recognising the importance of chronic lung disease: A consensus statement from the Global Alliance for Chronic Diseases (Lung Diseases group). Respiratory Research, 24(1), Article 15. https://doi.org/10.1186/s12931-022-02297-y
Khalaf, E. M., Mohammadi, M. J., Sulistiyani, S., Ramírez-Coronel, A. A., Kiani, F., Jalil, A. T., Almulla, A. F., Asban, P., Farhadi, M., & Derikondi, M. (2022). Effects of sulfur dioxide inhalation on human health: A review. Reviews on Environmental Health, 10. https://doi.org/10.1515/reveh-2022-0237
Khaniabadi, Y. O., Goudarzi, G., Daryanoosh, S. M., Borgini, A., Tittarelli, A., & De Marco, A. (2017). Exposure to PM10, NO2, and O3 and impacts on human health. Environmental Science and Pollution Research, 24, 2781–2789. https://doi.org/10.1007/s11356-016-8038-6
Lee, H. J., Chatfield, R. B., & Strawa, A. W. (2016). Enhancing the applicability of satellite remote sensing for PM2.5 estimation using MODIS deep blue AOD and land use regression in California, United States. Environmental Science and Technology, 50(12), 6546–6555. https://doi.org/10.1021/acs.est.6b01438
Lorente, A., Boersma, K. F., Eskes, H. J., Veefkind, J. P., Van Geffen, J. H. G. M., De Zeeuw, M. B., Denier Van Der Gon, H. A. C., Beirle, S., & Krol, M. C. (2019). Quantification of nitrogen oxides emissions from build-up of pollution over Paris with TROPOMI. Scientific Reports, 9, Article 20033. https://doi.org/10.1038/s41598-019-56428-5
Matejicek, L. (2005). Spatial modelling of air pollution in urban areas with GIS: A case study on integrated database development. Advances in Geosciences, 4, 63–68. https://doi.org/10.5194/adgeo-4-63-2005
McDuffie, E. E., Martin, R. V., Spadaro, J. V., Burnett, R., Smith, S. J., O’Rourke, P., Hammer, M. S., Van Donkelaar, A., Bindle, L., Shah, V., Jaeglé, L., Luo, G., Yu, F., Adeniran, J. A., Lin, J., & Brauer, M. (2021). Source sector and fuel contributions to ambient PM2.5 and attributable mortality across multiple spatial scales. Nature Communications, 12, Article 3594. https://doi.org/10.1038/s41467-021-23853-y
Meinshausen, M., Lewis, J., Mcglade, C., Gütschow, J., Nicholls, Z., Burdon, R., Cozzi, L., & Hackmann, B. (2022). Realization of Paris Agreement pledges may limit warming just below 2 °C. Nature, 604, 304–309. https://doi.org/10.1038/s41586-022-04553-z
National Institute of Environmental Health Sciences. (n.d.). Air pollution. Retrieved February 25, 2024, from https://www.niehs.nih.gov/research/supported/exposure/air_pollution
Paisi, N., Kushta, J., Pozzer, A., Violaris, A., & Lelieveld, J. (2024). Health effects of carbonaceous PM2.5 compounds from residential fuel combustion and road transport in Europe. Scientific Reports, 14, Article 1530. https://doi.org/10.1038/s41598-024-51916-9
Petrowski, K., Bührer, S., Strauß, B., Decker, O., & Brähler, E. (2021). Examining air pollution (PM10), mental health and well-being in a representative German sample. Scientific Reports, 11, Article 18436. https://doi.org/10.1038/s41598-021-93773-w
Siegel, R. L., Miller, K. D., Wagle, N. S., & Jemal, A. (2023). Cancer statistics, 2023. CA: A Cancer Journal for Clinicians, 73(1), 17–48. https://doi.org/10.3322/caac.21763
Sobieraj, K., Stegenta-Dąbrowska, S., Luo, G., Koziel, J. A., & Białowiec, A. (2022). Carbon monoxide fate in the environment as an inspiration for biorefinery industry: A review. Frontiers in Environmental Science, 10, Article 822463. https://doi.org/10.3389/fenvs.2022.822463
Téllez, J., Rodríguez, Á., & Fajardo, A. (2006). Contaminación por monóxido de carbono: un problema de salud ambiental. Revista de Salud Pública, 8(1), 108–117. https://doi.org/10.1590/S0124-00642006000100010
Ullo, S. L., & Sinha, G. R. (2020). Advances in smart environment monitoring systems using IoT and sensors. Sensors, 20(11), Article 3113. https://doi.org/10.3390/s20113113
UNESCO Multimedia Archives. (n.d.). The Old Town of Vilnius: The Rome of the East, Lithuania. Retrieved February 26, 2024, from https://www.unesco.org/archives/multimedia/document-102
United States Environmental Protection Agency. (n.d.). Sulfur dioxide (SO2) pollution. Retrieved January 18, 2024, from https://www.epa.gov/so2-pollution
Wang, Z., Shi, Z., Wang, F., Liang, W., Shi, G., Wang, W., Chen, D., Liang, D., Feng, Y., & Russell, A. G. (2022). Implications for ozone control by understanding the survivor bias in observed ozone-volatile organic compounds system. npj Climate and Atmospheric Science, 5, Article 39. https://doi.org/10.1038/s41612-022-00261-7
World Health Organization. (n.d.-a). Air pollution. Retrieved February 24, 2024, from https://www.who.int/data/gho/data/themes/air-pollution
World Health Organization. (n.d.-b). Ambient (outdoor) air pollution. Retrieved February 24, 2024, from https://www.who.int/news-room/fact-sheets/detail/ambient-(outdoor)-air-quality-and-health
World Health Organization. (n.d.-c). Retrieved February 24, 2024, from https://www.who.int/
Yang, R., Hao, X., Zhao, L., Yin, L., Liu, L., Li, X., & Liu, Q. (2022). Design and implementation of a highly accurate spatiotemporal monitoring and early warning platform for air pollutants based on IPv6. Scientific Reports, 12, Article 4615. https://doi.org/10.1038/s41598-022-08416-5
Yousif, J., & Alattar, N. (2020, January). Evaluating particulate matter (PM2.5 and PM10) impact on human health in Oman based on a hybrid artificial neural network and mathematical models. In International Conference on Control, Artificial Intelligence, Robotics & Optimization (pp. 129–135), Athens, Greece. https://doi.org/10.1109/ICCAIRO47923.2019.00028