Share:


Comparison of different adsorbents, cellulose aerogel, devulcanized rubber granules and pyrolyzed sewage sludge granules, for dye removal from contaminated water

Abstract

The release of dyes used in the textile industry into the natural environment causes unwanted negative effects due to the carcinogenic, mutagenic or even teratogenic properties of the dyes. Based on their chemical composition, dyes are divided into anionic, cationic and non-ionic dyes. In this work, the physical method of wastewater treatment – adsorption – was studied. This is a method in which various natural substances called sorbents are used. Materials used in the adsorption process should be nontoxic, environmentally friendly, cheap, and their use should not cause secondary pollution. The idea of using sorbents made from waste in experimental studies, which can even be used several times in the adsorption process, promotes the sustainable use of resources. The study compared different sorbents: aerogel, devulcanized rubber granules and sewage sludge. It was found that the highest values of adsorption efficiency were characterized by sewage sludge granules that were pyrolyzed at 500 °C. Using 500 °C pyrolysis sewage sludge, the adsorption efficiency reached 28.14–53.73%. Granules made from devulcanized car tire rubber had the lowest adsorption efficiency values: the adsorption efficiency value reached 12.92%. The adsorption efficiency values of the aerogel synthesized from paper waste ranged from 28.21 to 38.07%.


Article in Lithuanian.


Skirtingų adsorbentų, celiuliozės aerogelio, devulkanizuotos gumos granulių ir pirolizuotų nuotekų dumblo granulių naudojimo dažikliams šalinti iš užteršto vandens palyginimas


Santrauka


Tekstilės pramonėje naudojamų dažiklių patekimas į gamtinę aplinką kelia nepageidaujamą neigiamą poveikį dėl dažiklių kancerogeninių, mutageninių ar net teratogeninių savybių. Remiantis chemine sudėtimi dažikliai yra skirstomi į anijoninius, katijoninius ir nejoninius dažiklius. Šiame darbe buvo tirtas fizikinis gamybinių nuotekų valymo būdas – adsorbcija. Tai metodas, kurio metu yra naudojamos įvairios prigimties medžiagos, vadinamos sorbentais. Adsorbcijos procese naudojamos medžiagos turėtų būti netoksiškos, draugiškos aplinkai, pigios, jų naudojimas neturėtų sukelti antrinės taršos. Eksperimentiniuose tyrimuose naudojamų iš atliekų pagamintų sorbentų, kuriuos adsorbcijos procese galima panaudoti net kelis kartus, idėja skatina tvarų išteklių naudojimą. Tyrime palyginti skirtingi sorbentai: iš popieriaus susintetintas aerogelis, devulkanizuotos gumos granulės ir nuotekų dumblo granulės. Nustatyta, jog aukščiausiomis adsorbcijos efektyvumo vertėmis pasižymėjo nuotekų dumblo granulės, kurios buvo pirolizuotos 500 °C temperatūroje. Naudojant 500 °C pirolizės nuotekų dumblo granules adsorbcijos efektyvumas siekė 28,14–53,73 %. Žemiausiomis adsorbcijos efektyvumo vertėmis pasižymėjo iš devulkanizuotos automobilių padangų gumos pagamintos granulės: adsorbcijos efektyvumo vertė siekė 12,92 %. Iš popieriaus atliekų susintetinto aerogelio adsorbcijos efektyvumo vertės svyravo 28,21–38,07 % intervale.


Reikšminiai žodžiai: adsorbcija, aerogelis, dažikliai, devulkanizuotos gumos granulės, nuotekų dumblas, tekstilė.

Keyword : adsorption, aerogel, dyes, devulcanized rubber granules, sewage sludge, textile

How to Cite
Liugė, M., & Paliulis, D. (2023). Comparison of different adsorbents, cellulose aerogel, devulcanized rubber granules and pyrolyzed sewage sludge granules, for dye removal from contaminated water. Mokslas – Lietuvos Ateitis / Science – Future of Lithuania, 15. https://doi.org/10.3846/mla.2023.19436
Published in Issue
Aug 16, 2023
Abstract Views
269
PDF Downloads
188
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Ali, U. F. M., Hussin, F., Gopinath, S. C. B., Aroua, M. K., Khamidun, M. H., Jusoh, N., Ibrahim, N., & Ahmad, S. F. K. (2022). Advancement in recycling waste tire activated carbon to potential adsorbents. Journal of Environmental Engineering Research, 27(6), 210452. https://doi.org/10.4491/eer.2021.452

Ardila-Leal, L. D., Poutou-Piñales, R. A., Pedroza-Rodríguez, A. M., & Queve-do-Hidalgo, B. E. (2021). A brief history of colour, the environmental impact of synthetic dyes and removal by using laccases. Journal of Molecules, 26(13), 5–7. https://doi.org/10.3390/molecules26133813

Azanaw, A., Birlie, B., Teshome, B., & Jemberie, M. (2022). Textile effluent treatment methods and eco-friendly resolution of textile wastewater. Case Studies in Chemical and Environmental Engineering, 6, 100230. https://doi.org/10.1016/j.cscee.2022.100230

Chandanshive, V., Kadam, S., Rane, N., Jeon, B.-H., Jadhav, J., & Govindwar, C. (2020). In situ textile wastewater treatment in high rate transpiration system furrows planted with aquatic macrophytes and floating phytobeds. Journal of Chemosphere, 252, 126513. https://doi.org/10.1016/j.chemosphere.2020.126513

Gunasundari, E., Senthil, K. P., Rajamohan, N., & Vellaichamy, P. (2020). Feasibility of naphthol green-B dye adsorption using microalgae: Thermodynamic and kinetic analysis. Desalination and Water Treatment, 192, 359. https://doi.org/10.5004/dwt.2020.25777

Irdemez, S., Ozyay, G., Ekmekyapar, F., Kul, S., & Bingul, Z. (2022). Comparison of bomaplex blue CR-L removal by adsorption using raw and activated pumpkin seed shells. Ecological Chemistry and Engineering, 29(2), 199–200. https://doi.org/10.2478/eces-2022-0015

Islam, M. T., Saenz-Arana, R., Hernandez, C., Guinto, T., Ahsan, M. A., Bragg, D. T., Wang, H., Alvarado-Tenorio, B., & Noveron, J. C. (2018). Conversion of waste tire rubber into a high-capacity adsorbent for the removal of methylene blue, methyl orange, and tetracycline from water. Journal of Environmental Chemistry Engineering, 6(2), 3070–3082. https://doi.org/10.1016/j.jece.2018.04.058

Yang, L., Zhan, Y., Gong, Y., Ren, E., Lan, J., Guo, R., Yan, B., Chen, S., & Lin, S. (2021). Development of eco-friendly CO2-responsive cellulose nanofibril aerogels as “green” adsorbents for anionic dyes removal. Journal of Hazardous Materials, 405, 124194. https://doi.org/10.1016/j.jhazmat.2020.124194

Januševičius, T., Mažeikienė, A., Danila, V., & Paliulis, D. (2022). The characteristics of sewage sludge pellet biochar prepared using two different pyrolysis methods. Biomass Conversion and Biorefinery. https://doi.org/10.1007/s13399-021-02295-y

Kishor, R., Purchase, D., Saratale, G. D., Saratale, R. G., Romanholo Ferreira, L. F., Bilal, M., Chandra, R., & Bharagava, R. N. (2021). Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety. Journal of Environmental Chemistry Engineering, 9(2), 105012. https://doi.org/10.1016/j.jece.2020.105012

Liugė, M. ir Paliulis, D. (2022). Dažiklių šalinimo iš nuotekų eksperimentiniai tyrimai naudojant iš automobilių padangų atliekų pagamintas devulkanizuotos gumos granules. Iš 25-osios Lietuvos jaunųjų mokslininkų konferencijos „Mokslas – Lietuvos ateitis“ (p. 24–29), Vilnius, Lietuva. https://doi.org/10.3846/aainz.2022.004

Liugė, M., Paliulis, D., & Šerevičienė, V. (2022). Experimental studies on the removal of textile dyes from artificially contaminated water using sorbent synthesized from paper waste. In 2022 International Conference and Utility Exhibition on Energy, Environment and Climate Change (ICUE) (pp. 1–7), Pattaya, Thailand. https://doi.org/10.1109/ICUE55325.2022.10113497

Musa, M. A., & Idrus, S. (2021). Physical and biological treatment technologies of slaughterhouse wastewater: A review. Sustainability, 13(9), 6–7. https://doi.org/10.3390/su13094656

Pacurariu, R. L., Vatca, S. D., Lakatos, E. S., Bacali, L., & Vlad, M. (2021). A critical review of EU key indicators for the transition to the circular economy. International Journal of Environmental Research and Public Health, 18(16), 1–2. https://doi.org/10.3390/ijerph18168840

Paulauskiene, T., Uebe, J., & Ziogas, M. (2021). Cellulose aerogel composites as oil sorbents and their regeneration. PeerJ, 9, e11795. https://doi.org/10.7717/peerj.11795

Samsami, S., Mohamadi, M., Sarrafzadeh, M. H., Rene, E. R., & Firoozbahr, M. (2020). Recent advances in the treatment of dye-containing wastewater from textile industries: Overview and perspectives. Journal of Process Safety and Environmental Protection, 143, 138–163. https://doi.org/10.1016/j.psep.2020.05.034

Šarko, J., Leonavičienė, T., & Mažeikienė, A. (2022). Research and modelling the ability of waste from water and wastewater treatment to remove phosphates from water. Journal of Processes, 10(412), 1–2. https://doi.org/10.3390/pr10020412

Thai, Q. B., Le, D. K., Do, N. H. N., Le, P. K., Phan-Thien, N., Wee, C. Y., & Duong, H. M. (2020). Advanced aerogels from waste tire fibers for oil spill-cleaning applications. Journal of Environmental Chemical Engineering, 8(4), 104016. https://doi.org/10.1016/j.jece.2020.104016

Wei, F., Shahid, M. J., Alnusairi, G. S. H., Afzal, M., Khan, A., El-Esawi, M. A., Abbas, Z., Wei, K., Zaheer, I. E., Rizwan, M., & Ali, S. (2020). Implementation of floating treatment wetlands for textile wastewater management: A review. Sustainability, 12(14), 5801. https://doi.org/10.3390/su12145801

Wu, X., Yang, X., Wu, D., & Fu, R. (2008). Feasibility study of using carbon aerogel as particle electrodes for decoloration of RBRX dye solution in a three-dimensional electrode reactor. Chemical Engineering Journal, 138(1–3), 47–54. https://doi.org/10.1016/j.cej.2007.05.027