Analysis and evaluation of the biogas purification technologies from H2S


H2S concentrations in biogas are limited by environmental regulations. Because these gases are toxic to human health, cause corrosion, and damage the combined heat and power (CHP) engines and other metallic parts after burning. Hence, the following requirements must be met by a biogas purification method: 1 – high H2S removal efficiency (RE), 2 – stability over a long period of time, 3 – low cost, 4 – minimal biogas dilution, and 5 – straightforward structure. There are various physical, chemical, and biological technologies, which can be undertaken to meet earlier mentioned criteria and efficiently remove H2S from biogas. In this study, electrochemical oxidation, adsorption by zeolite, pressure swing adsorption, adsorption on activated carbon, adsorption on metal oxides, adsorption on nano-particles, metal sulfide precipitation, water scrubbing, membrane separation, organic solvents (amine), microaeration, and purification by sulfur-oxidizing bacteria (anoxic, aerobic, anaerobic), will be introduced, while their pros and cons are compared and discussed in detail. 

Article in English.

H2S valymo iš biodujų technologijų analizė ir vertinimas


H2S koncentracijas biodujose reglamentuoja aplinkosaugos teisės aktai. Šios dujos yra nuodingos žmonių sveikatai, sukelia koroziją bei pažeidžia šilumos ir elektros (ŠEV) variklius bei kitus mechanizmus. Taigi, taikant biodujų valymo metodą, turi būti tenkinami šie reikalavimai: 1 – aukštas H2S šalinimo efektyvumas (ŠE), 2 – stabilumas ilgą laiką, 3 – maža kaina, 4 – minimalus biodujų skiedimas ir 5 – paprasta struktūra. Yra įvairių fizinių, cheminių ir biologinių technologijų, kurias galima naudoti, kad atitiktų anksčiau minėtus kriterijus ir būtų efektyviai pašalintas H2S iš biodujų. Šiame tyrime aprašoma elektrocheminė oksidacija, adsorbcija naudojant ceolitą, slėgio svyravimo adsorbcija, adsorbcija su aktyvuota anglimi, adsorbcija ant metalų oksidų, adsorbcija ant nanodalelių, metalo sulfido nusodinimas, vandens šveitimas, membranų atskyrimas, organiniai tirpikliai (aminai ir mikrobai). Tyrimo metu bus pristatytas gryninimas sierą oksiduojančiomis bakterijomis (anoksinėmis, aerobinėmis, anaerobinėmis), o jų privalumai ir trūkumai bus lyginami tarpusavyje ir išsamiai analizuojami.

Reikšminiai žodžiai: H2S, biodujos, valymo metodai, fizinė technologija, cheminė technologija, biologinė technologija.

Keyword : H2S, biogas, purification methods, physical technologies, chemical technologies, biological technologies

How to Cite
Mohammadi, K., & Vaiškūnaitė, R. (2023). Analysis and evaluation of the biogas purification technologies from H2S. Mokslas – Lietuvos Ateitis / Science – Future of Lithuania, 15.
Published in Issue
Aug 17, 2023
Abstract Views
PDF Downloads
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Abd, A. A., & Othman, M. R. (2022). Biogas upgrading to fuel grade methane using pressure swing adsorption: Parametric sensitivity analysis on an industrial scale. Fuel, 308, 121986.

Alkhatib, I. I. I., Khalifa, O., Bahamon, D., Abu-Zahra, M. R. M., & Vega, L. F. (2021). Sustainability criteria as a game changer in the search for hybrid solvents for CO2 and H2S removal. Separation and Purification Technology, 277, 119516.

Aryal, N., Zhang, Y., Bajracharya, S., Pant, D., & Chen, X. (2022). Microbial electrochemical approaches of carbon dioxide utilization for biogas upgrading. Chemosphere, 291, 132843.

Bahraminia, S., Anbia, M., & Koohsaryan, E. (2020). Hydrogen sulfide removal from biogas using ion-exchanged nanostructured NaA zeolite for fueling solid oxide fuel cells. International Journal of Hydrogen Energy, 45(55), 31027–31040.

Choudhury, A., & Lansing, S. (2021). Adsorption of hydrogen sulfide in biogas using a novel iron-impregnated biochar scrubbing system. Journal of Environmental Chemical Engineering, 9(1), 104837.

Cuimei, B., Wei, G., Chao, T., Jun, L., & Xiaohua, L. (2018). Dynamic control design and simulation of biogas pressurized water scrubbing process. IFAC-PapersOnLine, 51(18), 560–565.

Das, J., Nolan, S., & Lens, P. N. L. (2022a). Simultaneous removal of H2S and NH3 from raw biogas in hollow fibre membrane bioreactors. Environmental Technology & Innovation, 28, 102777.

Das, J., Ravishankar, H., & Lens, P. N. L. (2022b). Biological biogas purification: Recent developments, challenges and future prospects. Journal of Environmental Management, 304, 114198.

Franco-Morgado, M., Toledo-Cervantes, A., González-Sánchez, A., Lebrero, R., & Muñoz, R. (2018). Integral (VOCs, CO2, mercaptans and H2S) photosynthetic biogas upgrading using innovative biogas and digestate supply strategies. Chemical Engineering Journal, 354, 363–369.

Gao, Y., Han, Z., Zhai, G., Dong, J., & Pan, X. (2022). Oxidation absorption of gaseous H2S using UV/S2O82− advanced oxidation process: Performance and mechanism. Environmental Technology & Innovation, 25, 102124.

Ghimire, A., Gyawali, R., Lens, P. N. L., & Lohani, S. P. (2021). Technologies for removal of hydrogen sulfide (H2S) from biogas. In Emerging technologies and biological systems for biogas upgrading (pp. 295–320). Elsevier.

Haosagul, S., Prommeenate, P., Hobbs, G., & Pisutpaisal, N. (2020). Sulfur-oxidizing bacteria in full-scale biogas cleanup system of ethanol industry. Renewable Energy, 150, 965–972.

Hou, N., Xia, Y., Wang, X., Liu, H., Liu, H., & Xun, L. (2018). H2S biotreatment with sulfide-oxidizing heterotrophic bacteria. Biodegradation, 29, 511–524.

Irani, V., Tavasoli, A., & Vahidi, M. (2018). Preparation of amine functionalized reduced graphene oxide/methyl diethanolamine nanofluid and its application for improving the CO2 and H2S absorption. Journal of Colloid and Interface Science, 527, 57–67.

Jia, T., Sun, S., Zhao, Q., Peng, Y., & Zhang, L. (2022). Extremely acidic condition (pH<1.0) as a novel strategy to achieve high-efficient hydrogen sulfide removal in biotrickling filter: Biomass accumulation, sulfur oxidation pathway and microbial analysis. Chemosphere, 294, 133770.

Jiao, Y., Han, S., Zhang, W., Guo, M., Cheng, F., & Zhang, M. (2022). Self-assembled CuO-bearing aerogel-like hollow Al2O3 microspheres for room temperature dry capture of H2S. Chemical Egineering Research and Design, 177, 174–183.

Juntranapaporn, J., Vikromvarasiri, N., Soralump, C., & Pisutpaisal, N. (2019). Hydrogen sulfide removal from biogas in biotrickling filter system inoculated with Paracoccus pantotrophus. International Journal of Hydrogen Energy, 44(56), 29554–29560.

Khalil, M., Berawi, M. A., Heryanto, R., & Rizalie, A. (2019). Waste to energy technology: The potential of sustainable biogas production from animal waste in Indonesia. Renewable and Sustainable Energy Reviews, 105, 323–331.

Khan, M. U., Lee, J. T. E., Bashir, M. A., Dissanayake, P. D., Ok, Y. S., Tong, Y. W., Shariati, M. A., Wu, S., & Ahring, B. K. (2021). Current status of biogas upgrading for direct biomethane use: A review. Renewable and Sustainable Energy Reviews, 149, 111343.

Konkol, D., Popiela, E., Skrzypczak, D., Izydorczyk, G., Mikula, K., Moustakas, K., Opaliński, S., Korczyński, M., Witek-Krowiak, A. W., & Chojnacka, K. (2022). Recent innovations in various methods of harmful gases conversion and its mechanism in poultry farms. Environmental Research, 214, 113825.

Kulawong, S., Artkla, R., Sriprapakhan, P., & Maneechot, P. (2022). Biogas purification by adsorption of hydrogen sulfide on NaX and Ag-exchanged NaX zeolites. Biomass and Bioenergy, 159, 106417.

Ma, C., Zhao, Y., Chen, H., Liu, Y., Huang, R., & Pan, J. (2022). Biochars derived from by-products of microalgae pyrolysis for sorption of gaseous H2S. Journal of Environmental Chemical Engineering, 10(3), 107370.

Ma, M., & Zou, C. (2018). Effect of nanoparticles on the mass transfer process of removal of hydrogen sulfide in biogas by MDEA. International Journal of Heat and Mass Transfer, 127, 385–392.

Moradi, H., Azizpour, H., Bahmanyar, H., & Mohammadi, M. (2020). Molecular dynamics simulation of H2S adsorption behavior on the surface of activated carbon. Inorganic Chemistry Communications, 118, 108048.

Nhut, H. H., Thanh, V. T., & Le, L. T. (2020). Removal of H2S in biogas using biotrickling filter: Recent development. Process Safety and Environmental Protection, 144, 297–309.

Prasertcharoensuk, P., Promtongkaew, A., Tawatchai, M., Marquez, V., Jongsomjit, B., Tahir, M., Praserthdam, S., & Praserthda, P. (2022). A review on sensitivity of operating parameters on biogas catalysts for selective oxidation of Hydrogen Sulfide to elemental sulfur. Chemosphere, 301, 134579.

Pudi, A., Rezaei, M., Signorini, V., Andersson, M. P., Baschetti, M. G., & Mansouri, S. S. (2022). Hydrogen sulfide capture and removal technologies: A comprehensive review of recent developments and emerging trends. Separation and Purification Technology, 298, 121448.

Santos-Clotas, E. S., Cabrera-Codony, A. C., Comas, J., & Martín, M. J. (2020). Biogas purification through membrane bioreactors: Experimental study on siloxane separation and biodegradation. Separation and Purification Technology, 238, 116440.

Shi, M., Xiong, W., Zhang, X., Ji, J., Hu, X., Tu, Z., & Wu, Y. (2022). Highly efficient and selective H2S capture by task-specific deep eutectic solvents through chemical dual-site absorption. Separation and Purification Technology, 283, 120167.

Su, J.-J., & Hong, Y.-Y. (2020). Removal of hydrogen sulfide using a photocatalytic livestock biogas desulfurizer. Renewable Energy, 149, 181–188.

Torres, R. A., Marín, D., Rodero, M. D. R., Pascual, C., Sanchez, A. G., Crespo, I. G., Lebrero, R., & Torre, R. M. (2020). Biogas treatment for H2S, CO2, and other contaminants removal. In From biofiltration to promising options in gaseous fluxes biotreatment (pp. 153–176). Elsevier.

Vikrant, K., Kailasa, S. K., Tsang, D. C. W., Lee, S. S., Kumar, P., Giri, B. S., Singh, R. S., & Kim, K.-H. (2018). Biofiltration of hydrogen sulfide: Trends and challenges. Journal of Cleaner Production, 187, 131–147.

Wang, S., Nam, H., Lee, D., & Nam, H. (2022). H2S gas adsorption study using copper impregnated on KOH activated carbon from coffee residue for indoor air purification. Journal of Environmental Chemical Engineering, 10(6), 108797.

Watsuntorn, W., Khanongnuch, R., Chulalaksananukul, W., Rene, E. R., & Lens, P. N. L. (2020). Resilient performance of an anoxic biotrickling filter for hydrogen sulfide removal from a biogas mimic: Steady, transient state and neural network evaluation. Journal of Cleaner Production, 249, 119351.

Xu, Y., Chen, Y., Ma, C., Qiao, W., Wang, J., & Ling, L. (2022). Functionalization of activated carbon fiber mat with bimetallic active sites for NH3 and H2S adsorption at room temperature. Separation and Purification Technology, 305, 122335.

Zhang, Y., Kawasaki, Y., Oshita, K., Takaoka, M., Minami, D., Inoue, G., & Tanaka, T. (2021). Economic assessment of biogas purification systems for removal of both H2S and siloxane from biogas. Renewable Energy, 168, 119–130.

Zhang, X., Lawan, I., Danhassan, U. A., He, Y., Qi, R., Wu, A., Sheng, K., & Lin, H. (2022). Advances in technologies for in situ desulfurization of biogas. Advances in Bioenergy, 7, 99–137.