Share:


Experimental test stand of a heat pump integrated in air handling unit

Abstract

Heat pumps are becoming increasingly popular and are playing an important role in the heat and cooling supply chain of buildings sector. Although more than 160 years have passed since the manufacture of the first heat pump, this technology, designed to recover low­potential heat energy and its useful use, can be called an innovative and efficient energy transformer. Air­to­water and air­to­air heat pumps are becoming more popular today due to their installation cost compared to ground­to­water heat pumps. It has been noticed that recently air­to­air heat pumps are more often installed in modern air handling units. The main energy transformers in these air handling units are the air­to­air heat pump and recovery heat exchanger. In the scientific literature little attention is paid to the thermodynamic cycle of the combination of the air handling unit and the heat pump, as well as the search for new possibilities to change and control it, this is a potential direction that can increase the efficiency of the whole system. To study the control capabilities of the unit, an experimental stand of the heat pump built into the ventilation unit is needed; it would help validate the results of theoretical studies and investigate the possibilities of expanding the control. Therefore, this paper presents a review of the experimental stands of non­integrated heat pumps and integrated heat pumps in air handling unit. Based on this review, the basic requirements for the installation of an experimental stand of a heat pump built into an air handling unit are formulated and a conceptual scheme of this stand is drawn up.


Article in Lithuanian.


Vėdinimo įrenginio šilumos siurblio eksperimentinio tyrimo stendas


Santrauka


Šilumos siurbliai (ŠS) tampa vis populiaresni ir užima reikšmingą dalį pastatų šilumos bei vėsos aprūpinimo grandinėje. Nors nuo pirmojo ŠS pagaminimo jau praėjo daugiau nei 160 metų, šią technologiją, skirtą žemo potencialo šiluminei energijai atgauti bei naudingai panaudoti, galima pavadinti inovatyviu ir efektyviu energijos transformatoriumi. Šiandien ŠS „oras–vanduo“ ir „oras–oras“ dėl savo įdiegimo kainos lyginant su ŠS „gruntas–vanduo“ tampa vis populiaresni. Pastebėta, kad ŠS „oras–oras“ vis plačiau montuojami šiuolaikiniuose vėdinimo įrenginiuose. Šiuose vėdinimo įrenginiuose pagrindiniai energijos transformatoriai yra „oras–oras“ šilumos siurblys ir šilumogrąžis. Mokslinėje literatūroje mažai dėmesio skiriama vėdinimo įrenginio ir šilumos siurblio derinio termodinaminiam ciklui bei naujų galimybių paieškai jį keisti ir valdyti, o tai potenciali kryptis, kuri galėtų pagerinti visos sistemos efektyvumo rodiklius. Siekiant tyrinėti įrenginio valdymo galimybes, reikalingas į vėdinimo įrenginį integruoto šilumos siurblio eksperimentinis stendas, kuris padėtų validuoti teorinių tyrimų rezultatus bei atskleisti valdymo praplėtimo sprendinius. Todėl šiame darbe atliekama šilumos siurblių atskiro veikimo ir vėdinimo įrenginiuose integruotų eksperimentinių stendų apžvalga. Ja remiantis suformuluojami į vėdinimo įrenginį integruoto šilumos siurblio eksperimentinio stendo įrengimo pagrindiniai reikalavimai ir parengiama šio stendo principinė schema.


Reikšminiai žodžiai: vėdinimo įrenginyje integruotas šilumos siurblys, eksperimentinis stendas, šilumos siurblio termodinaminis ciklas.

Keyword : heat pump integrated in air handling unit, experimental stand, thermodynamic cycle of heat pump

How to Cite
Frik, A., & Bielskus, J. (2020). Experimental test stand of a heat pump integrated in air handling unit. Mokslas – Lietuvos Ateitis / Science – Future of Lithuania, 12. https://doi.org/10.3846/mla.2020.13075
Published in Issue
Sep 22, 2020
Abstract Views
700
PDF Downloads
429
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Aprea, C., Mastrullo, R., & Renno, C. (2006). Experimental analysis of the scroll compressor performances varying its speed. Applied Thermal Engineering, 26(10), 983–992.
https://doi.org/10.1016/j.applthermaleng.2005.10.023

Bareika, P. (2013). Vėdinimo įrenginių su integruotais šilumos siurbliais projektavimas, tyrimas ir analizė. Vilniaus Gedimino technikos universitetas.

Dongellini, M., Abbenante, M., & Morini, G. L. (2017). A strategy for the optimal control logic of heat pump systems: impact on the energy consumptions of a residential building. Paper presnted at the Proceedings of the 12th IEA Heat Pump Conference 2017.

Europos Parlamentas. (2016). Europos Parlamento rezoliucija dėl ES šildymo ir vėsinimo strategijos (2016/2058(INI)). https://eur-lex.europa.eu/legal-content/LT/TXT/?uri=CELEX%3A52016IP0334

European Commission. (2016). An EU strategy on heating and cooling 2016. Brussels.

Frik, A. (2019). Eksperimentinis šilumos siurblio ciklo tyrimas, jo valdymo algoritmo parengimas. Vilniaus Gedimino technikos universitetas. https://doi.org/10.20334/pinzs.2019.02

Gunt. (2019). Air conditioning system model gunt Et 605. Berlin.

Jouhara, H., & Yang, J. (2018). Energy efficient HVAC systems. Energy and Buildings, 179, 83–85. https://doi.org/10.1016/j.enbuild.2018.09.001

Karim, A., Ishtiyaque, S., Afridi, F., Kaneez, R., Kamaludin, S., Karim, A., Khan, A. A., Abouesayed, A., Solung, A. R., Ghanzanfar, F., Hai, M., & Siddique, M. (2019). A Simple approach to design and fabricate an efficient heat pump. Journal of Applied and Emerging Sciences, 8(2), 186–194.

Liu, Z., Fan, P., Wang, Q., Chi, Y., Zhao, Z., & Chi, Y. (2018). Air source heat pump with water heater based on a bypass­cycle defrosting system using compressor casing thermal storage. Applied Thermal Engineering, 128, 1420–1429.
https://doi.org/10.1016/j.applthermaleng.2017.09.131

Lu, F., Liu, S., Dai, B., Zhong, Z., Li, H., & Sun, Z. (2019). Experimental study on thermal performance of transcritical CO2 air source heat pump for space heating. Energy Procedia, 158, 5913–5919. https://doi.org/10.1016/j.egypro.2019.01.532

Martinaitis, V., Bareika, P. ir Misevičiūtė, V. (2012). Vėdinimo įrenginio su šilumos siurbliu termodinaminio efektyvumo tyrimas. Mokslas – Lietuvos ateitis / Science – Future of Lithuania, 4(5), 493–498. https://doi.org/10.3846/mla.2012.79

Qiu, J., Zhang, H., Sheng, J., & Wu, Z. (2019). Experimental investigation of L41b as replacement for R410A in a residential air­source heat pump water heater. Energy and Buildings, 199, 190–196. https://doi.org/10.1016/j.enbuild.2019.06.055

Song, M., Deng, S., Mao, N., & Ye, X. (2016). An experimental study on defrosting performance for an air source heat pump unit with a horizontally installed multi­circuit outdoor coil. Applied Energy, 165, 371–382.
https://doi.org/10.1016/j.apenergy.2015.12.107

Wenju, H., Yiqiang, J., Minglu, Q., Long, N., Yang, Y., & Shiming, D. (2011). An experimental study on the operating performance of a novel reverse­cycle hot gas defrosting method for air source heat pumps. Applied Thermal Engineering, 31(2–3), 363–369. https://doi.org/10.1016/j.applthermaleng.2010.09.024