Numerical modeling of particles movements in acoustic field

    Darius Vainorius Info

Abstract

Numerical simulation of the acoustic agglomeration of micron-sized mono-dispersed aerosol particles is demonstrated in the article. The forces acting the moving particle into the moving fluid as well as the coordinates and velocities of the particles are described by the differential equations. Having calculated results it is concluded that the agglomeration time of the two identical particles decreases mainly due to the introduction of other particles into the multilayer system.

Article in Lithuanian.

Dalelių judėjimo akustiniame lauke skaitinis modeliavimas

Santrauka Straipsnyje parodyta, kaip diskrečiųjų elementų metodas (DEM) taikomas polidispersinių aerozolio dalelių akustinės aglomeracijos skaitiniam modeliavimui. Lygtimis aprašytos jėgos, veikiančios dalelę, judančią terpėje, ir pateiktos dalelės judėjimo greičio ir trajektorijos nustatymo lygtys. Gavus rezultatus nustatyta, kad dviejų vienodo skersmens izoliuotų dalelių aglomeracijos laikas iš esmės sumažėja dėl kitų dalelių įterpimo į daugiasluoksnę sistemą. Reikšminiai žodžiai: akustinė aglomeracija, aerozolio dalelės, DEM.  

Keywords:

acoustic aglomeration, aerosol particles, DEM

How to Cite

Vainorius, D. (2018). Numerical modeling of particles movements in acoustic field. Mokslas – Lietuvos Ateitis Science – Future of Lithuania, 9(6), 588-592. https://doi.org/10.3846/mla.2017.1090

Share

Published in Issue
January 18, 2018
Abstract Views
838

References

Beetstra, R.; Hoef, M. A. Van Der; Kuipers, J. A. M. 2007. Drag force of intermediate Reynolds number flow past mono- and bidisperse arrays of spheres, AICHE Journal 53(2): 489–501. <a href= "https://doi.org/10.1002/aic.11065" target="_blank" rel="noopener"> https://doi.org/10.1002/aic.11065</a>

Deen, N. G.; Van Sint Annaland, M.; Van der Hoef, M. A.; Kuipers, J. A. M. 2007. Review of discrete particle modeling of fluidized beds, Chemical Engineering Science 62(1–2): 28–44. <a href= "https://doi.org/10.1016/j.ces.2006.08.014" target="_blank" rel="noopener"> https://doi.org/10.1016/j.ces.2006.08.014</a>

Europos Parlamento ir Tarybos Direktyva 2003/35/EB [interaktyvus]. 2003 [žiūrėta 2018 m. sausio 9 d.]. Prieiga per internetą: http://www.europarl.europa.eu/sides/getDoc.do?pubRef=-//EP//TEXT+REPORT+A8–2015–0249+0+DOC+XML+V0//LT

Hoffmann, T. L. 2000. Environmental implications of acoustic aerosol agglomeration, Ultrasonics 38(1–8): 353–357. <a href= "https://doi.org/10.1016/S0041–624X(99)00184–5" target="_blank" rel="noopener"> https://doi.org/10.1016/S0041–624X(99)00184–5</a>

Yao, Y. 2016. Research and applications of ultrasound in HVAC field: a review, Renewable and Sustainable Energy Reviews 58(May 2016): 52–68. <a href= "https://doi.org/10.1016/j.rser.2015.12.222" target="_blank" rel="noopener"> https://doi.org/10.1016/j.rser.2015.12.222</a>

Yazdchi, K.; Luding, S. 2012. Towards unified drag laws for inertial flow through fibrous materials, Chemical Engineering Journal 207–208: 35–48. <a href= "https://doi.org/10.1016/j.cej.2012.06.140" target="_blank" rel="noopener"> https://doi.org/10.1016/j.cej.2012.06.140</a>

Kačianauskas, R.; Maknickas, A.; Vainorius, D. 2017. DEM analysis of acoustic wake agglomeration for mono-sized mi-croparticles in the presence of gravitational effects, Granular matter 19: 1–12. <a href= "https://doi.org/10.1007/s10035–017–0726–5" target="_blank" rel="noopener"> https://doi.org/10.1007/s10035–017–0726–5</a>

Maxey, M. R.; Riley, J. J. 1983. Equation of motion for a small rigid sphere in a nonuniform flow, Physics of Fluids 26(4): 883–889. <a href= "https://doi.org/10.1063/1.864230" target="_blank" rel="noopener"> https://doi.org/10.1063/1.864230</a>

Mikhailov, M. D.; Freire, A. P. S. 2013. The drag coefficient of a sphere: an approximation using Shanks transform, Powder Technology 237(March 2013): 432–435. <a href= "https://doi.org/10.1016/j.powtec.2012.12.033" target="_blank" rel="noopener"> https://doi.org/10.1016/j.powtec.2012.12.033</a>

Omidvarborna, H.; Kumar, A.; Kim, D. 2015. Recent studies on soot modeling for diesel combustion, Renewable and Sustainable Energy Reviews 48(2015): 635–647. <a href= "https://doi.org/10.1016/j.rser.2015.04.019" target="_blank" rel="noopener"> https://doi.org/10.1016/j.rser.2015.04.019</a>

Tiwary, R.; Reethof, G. 1986. Hydrodynamic interaction of spherical aerosol particles in a high intensity acoustic field, Journal of Sound and Vibration 108(1): 33–49. <a href= "https://doi.org/10.1016/S0022–460X(86)80309–1" target="_blank" rel="noopener"> https://doi.org/10.1016/S0022–460X(86)80309–1</a>

Zaidi, A. A.; Tsuji, T.; Tanaka, T. 2015. Hindered settling velocity & structure formation during particle settling by direct numerical simulation, Procedia Engineering 102(2015): 1656–1666. <a href= "https://doi.org/10.1016/j.proeng.2015.01.302" target="_blank" rel="noopener"> https://doi.org/10.1016/j.proeng.2015.01.302</a>

Zhou, D.; Luo, Z.; Jiang, J.; Chen, H.; Lu, M.; Fang, M. 2016. Experimental study on improving the efficiency of dust removers by using acoustic agglomeration as pretreatment, Powder Technology 289 (February 2016): 52–59. <a href= "https://doi.org/10.1016/j.powtec.2015.11.009" target="_blank" rel="noopener"> https://doi.org/10.1016/j.powtec.2015.11.009</a>

Xiang, L.; Shuyan, W.; Huilin, L.; Goudong, L.; Juhui, C.; Yikun, L. 2010. Numerical simulation of particle motion in vibrated fluidized beds, Powder Technology 197(1–2): 25–35. <a href= "https://doi.org/10.1016/j.powtec.2009.08.016" target="_blank" rel="noopener"> https://doi.org/10.1016/j.powtec.2009.08.016</a>

View article in other formats

CrossMark check

CrossMark logo

Published

2018-01-18

How to Cite

Vainorius, D. (2018). Numerical modeling of particles movements in acoustic field. Mokslas – Lietuvos Ateitis Science – Future of Lithuania, 9(6), 588-592. https://doi.org/10.3846/mla.2017.1090

Share