Identification and quantification of project complexity from perspective of primary stakeholders in US construction projects

    Sharareh Kermanshachi Affiliation
    ; Elnaz Safapour Affiliation


Construction experts believe that complexity could adversely affect construction projects’ performance. Several studies have been focused on identifying leading complexity indicators; however, the complexity indicators from the perspective of primary stakeholders (owners, contractors, and consultants) have been rarely studied. Therefore, the aim of this study is to utilize the systematic Delphi method to identify, rank and weight the complexity indicators based on the primary stakeholders’ perspectives associated with US construction projects. Additionally, the shared entity-based complexity indicators (ECIs), as well as the weighting of entity-based complexity categories were determined and analyzed. Therefore, 101 potential ECIs were identified through a comprehensive literature review. Then, thirteen senior subject matter experts (SMEs), and three academic advisors were selected and invited to participate in a workshop to determine significant ECIs and then rank and weight them. The results reveal that the ECIs associated with complexity categories “scope definition” and “project resources” received the highest aggregated complexity weights in the aspect of the primary stakeholders. Although this study has been conducted based on US construction projects, the results would provide helpful guidance for international construction projects. Moreover, this study would assist the primary stakeholders in allocating resources properly in order to manage project complexity worldwide.

Keyword : construction project, project complexity, primary stakeholders, complexity indicators, indicator weighting, indicator ranking

How to Cite
Kermanshachi, S., & Safapour, E. (2019). Identification and quantification of project complexity from perspective of primary stakeholders in US construction projects. Journal of Civil Engineering and Management, 25(4), 380-398.
Published in Issue
Apr 16, 2019
Abstract Views
PDF Downloads
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Abdou, S. M., Yong, K., & Othman, M. (2016). Project complexity influence on project management performance – The Malaysian perspective. In The 4th International Building Control Conference 2016 (IBCC 2016) (Vol. 66, pp. 1-10).

Ahern, T., Leavy, B., & Byrne, P. J. (2013). Complex project management as complex problem solving: A distributed knowledge management perspective. International Journal of Project Management, 32, 1371-1381.

Ahn, S., Shokri, S., Lee, S., & Haas, R. (2017). Exploratory study on the effectiveness of interface-management practices in dealing with project complexity in large-scale engineering and construction projects. Journal of Management in
Engineering, 33(2), 1-12.

Ameyaw, E. E., Hu, Y., Shan, M., Chan, A. P. C., & Le, Y. (2016). Application of Delphi method in construction engineering and management research: A quantification perspective. Journal of Civil Engineering and Management, 22(8), 991-1000.

Baccarini, D. (1996). The concept of project complexity – a review. International Journal of Project Management, 14(4), 201-204.

Brockmann, D. I. C., & Girmscheid, I. G. (2007). Complexity of megaprojects. In CIB World Building Congress 2007. Cape Town, South Africa.

Bosch-Rekveldt, M. G. C. (2011). Managing project complexity: A study into adapting early project phases to improve project performance in large engineering projects. Delft: Delft University of Technology.

Cabaniss, K. (2001). Counseling and computer technology in the new millennium: An internet Delphi study (Doctoral dissertation). Virginia Polytechnic Institute and State University, Virginia, USA.

Chan, A. P. C., Yung, E. H. K., Lam, P. T. I., Tam, C. M., & Cheung, S. O. (2001). Application of Delphi method in selection of procurement systems for construction projects. Construction Management and Economics, 19(7), 699-718.

Dalkey, N. C., & Helmer, O. (1963). An experimental application of the Delphi-method to the use of experts. Management Science, 9(3), 458-467.

Dao, B., Kermanshachi, S., Shane, J., & Anderson, S. (2016). Project complexity assessment and management tool. Procedia Engineering, 145, 491-496.

Dao, B., Kermanshachi S., Shane J., & Anderson S. (2017). Exploring and assessing project complexity. Journal of Construction Engineering and Management, 143(5), 04016126.

DeMacro, T. (1982). Controlling software projects. New York: Yourdon Press.

Fellows, R. F., & Liu, A. M. (2009). Research methods for construction (3rd ed.). Chichester: John Wiley and Sons Ltd.

Gao, N., Chen, Y., Wang, W., & Wang, Y. (2018). Addressing project complexity: The role of contractual functions. Journal of Management in Engineering, 34(3), 04018011.

Gidado, K. (1996). Project complexity: The focal point of construction production planning. Construction Management and Economics, 14(3), 213-225.

Gransberg, D. D., Shane, J. S., Strong, K., & Puerto, C. L. D. (2013). Project complexity mapping in five dimensions for complex transportation projects. Journal of Management in Engineering, 29(4), 316-326.

Green, B., Jones, M., Hughes, D., & Williams, A. (1999). Applying the Delphi technique in a study of GPs information requirements. Health and Social Care in the Community, 7(3), 198-205.

Gupta, U. G., & Clarke, R. E. (1996). Theory and applications of the Delphi technique: a bibliography (1975-1994). Technological Forecasting and Social Change, 53(2), 185-211.

Hallowell, M. R., & Gambatese, J. A. (2010). Qualitative research: Application of the Delphi method to CEM research. Journal of Construction Engineering and Management, 136(1), 99-107.

Hass, K. B. (2008). Introducing the new project complexity model. Retrieved from

Hasson, F., Keeney, S., & McKenna, H. (2000). Research guidelines for the Delphi survey technique. Journal of Advanced Nursing, 32, 1008-1015.

He, Q. H., Luo, L., Hu, Y., & Chan, A. P. C. (2015). Measuring the complexity of mega construction projects in China – A fuzzy analytic network process analysis. International Journal of Project Management, 33(3), 549-563.

He, Q. H., Luo, L., Wang, J., Li, Y. K., & Zhao, L. (2012). Using analytic network process to analyze influencing factors of project complexity. In Proceeding of International Conference on Management Science and Engineering (p. 1781). IEEE Technology Management Council, New York, USA.

Ji, W., AbouRizk, S. M., Zaiane, O. R., & Li, Y. (2018). Complexity analysis approach for prefabricated construction products using uncertain data clustering. Journal Construction in Engineering Management, 144(8), 04018063.

Kauffman, S. A. (1993). The origins of order. Oxford: Oxford University Press.

Keeney, S., Hasson, F., & McKenna, H. P. (2001). A critical review of the Delphi technique as a research methodology for nursing. International Journal of Nursing Studies, 38(2), 195-200.

Keeney, S., Hasson, F., & Mckenna, H. (2011). The Delphi technique in nursing and health research. Chichester: Wiley-Blackwell.

Kermanshachi, S., Dao, B., Shane, J., & Anderson, S. (2016a). An empirical study into identifying project complexity management strategies. Procedia Engineering, 145, 603-610.

Kermanshachi, S., Dao, B., Shane, J., & Anderson, S. (2016b). Project complexity indicators and management strategies – A Delphi study. Procedia Engineering, 145, 587-594.

Kermanshachi, S., Dao, B., Rouhanizadeh, B., Shane, J., & Anderson, S. (2018). Development of the project complexity assessment and management framework for heavy industrial projects. International Journal of Construction Education and
Research, 29(2).

Kian Manesh Rad, E., Sun, M., & Bosche, F. (2017). Complexity for megaprojects in the energy sector. Journal of Management in Engineering, 33(4), 1-13.

Kiridena, S., & Sense, A. (2016). Profiling project complexity: Insights from complexity science and project management literature. Project Management Journal, 47(6), 56-74.

Lehtiranta, L. (2011). Relational risk management in construction projects: modeling the complexity. Leadership and Management in Engineering, 11(2), 141-154.

Lessard, D., Sakhrani, V., & Miller, R. (2014). House of project complexity – Understanding complexity in large infrastructure projects. Engineering Project Organization Journal, 4(4), 170-192.

Lindeman, C. (1981). Priorities within the health care system: A Delphi survey. Kansas City: American Nurses’ Association.

Liu, S. (2015). Effects of control on the performance of information systems projects: the moderating role of complexity risk. Journal of Operations Management, 36, 46-62.

Lu, Y., Luo, L., Wang, H., Le, Y., & Shi, Q. (2015). Measurement model of project complexity for large-scale projects from task and organization perspective. International Journal Project Management, 33, 610-622.

Luo, L., He, Q., Xie, J., Yang, D., & Wu, G. (2017). Investigating the relationship between project complexity and success in complex construction projects. Journal of Management in Engineering, 33(2), 1-12.

Manoliadis, O. G., Pantouvakis, J. P., & Christodoulou, S. E. (2009). Improving qualifications-based selection by use of the fuzzy Delphi method. Construction Management and Economics, 27(4), 373-384.

Manoliadis, O. G., Tsolas, I., & Nakou, A. (2006). Sustainable construction and drivers of change in Greece: a Delphi study. Construction Management and Economics, 24(2), 113-120.

Martino, J. P. (1983). Technological forecasting for decision-making. New York: Elsevier.

Maylor, H. (2003). Project management (3rd ed.). Harlow: FT Prentice Hall.

Maylor, H., Vidgen, R., & Carver, S. (2008). Managerial complexity in project-based operations: A grounded model and its implications for practice. Project Management Journal, 39(1), 15-26.

McKenna, H. P. (1994). The Delphi technique: a worthwhile approach for nursing? Journal of Advanced Nursing, 19, 1221-1225.

Nguyen, A. T., Nguyen, L. D., Le-Hoai, L., & Dang, C. N. (2015). Quantifying the complexity of transportation projects using the fuzzy analytic hierarchy process. International Journal of Project Management, 33, 1364-1376.

Okoli, C., & Pawlowski, S. D. (2004). The Delphi method as a research tool: an example, design considerations and applications. Information Management, 42, 15-29.

Owens, J., Ahn, J., Shane, J. S., Strong, K. C., & Gransburg, D. D. (2011). Defining complex project management of large US transportation projects: A comparative case study analysis. Public Works Management and Policy, 16(4), 234.1-234.10.

Perera, B., Rameezdeen, R., Chileshe, N., & Hosseini, M. R. (2014). Enhancing the effectiveness of risk management practices in Sri Lankan road construction projects: A Delphi approach. International Journal of Construction Management, 14(1), 1-19.

Powell, C. (2003). The Delphi technique: myths and realities. Journal of Advanced Nursing, 41(4), 376-382.

Priyadharsini, B., & Rathinakumar, V. (2018). Assessment of factors influencing construction project complexity (CPC).
International Journal of Civil Engineering and Technology, 9(4), 396-402.

Puddicombe, M. (2012). Novelty and technical complexity: critical constructs in capital projects. Journal of Construction in Engineering and Management, 138(5), 613-620.

Qureshi, S. M., & Kang, C. W. (2015). Analyzing the organizational factors of project complexity using structural equation modeling. International Journal of Project Management, 33, 165-176.

Remington, K., & Pollack, J. (2007). Tools for complex projects. Surrey: Gower Publishing.

Remington, K., Zolin, R., & Turner, R. (2009). A model of project complexity: distinguishing dimensions of complexity from severity. In Proceedings of the 9th International Research Network of Project Management Conference. Berlin, Germany.

Safapour, E., & Kermanshachi, S. (2019). Identifying early indicators of manageable rework causes and selecting and mitigating best practices for construction. Journal of Management in Engineering, 35(2), 04018060.

Safapour, E., Kermanshachi, S., Shane, J., & Anderson, S. D. (2017). Exploring and assessing the utilization of best practices for achieving excellence in construction projects. In Proceeding 6th CSCE/CRC International Construction Specialty Conference Leadership in Sustainable Infrastructure. Canadian Society for Civil Engineering, Montreal, Canada.

Safapour, E., Kermanshachi, S., Habibi, M., & Shane, J. (2018). Resource-based exploratory analysis of project complexity impact on phase-based cost performance behavior. In Proceedings of Construction Research Congress. ASCE, New Orleans, Louisiana, USA.

Safapour, E., Kermanshachi, S., & Ramaji, I. (2018). Entity-based investigation of project complexity impact on size and frequency of construction phase change orders. In Proceedings of Construction Research Congress. ASCE, New Orleans, Louisiana, USA.

Senescu, R. R., Aranda-Mena, G., & Haymaker, J. R. (2012). Relationships between project complexity and communication. Journal of Management in Engineering, 29(2), 183-197.

Shafiei-Monfared, S., & Jenab, K. (2012). A novel approach for complexity measure analysis in design projects. Journal of Engineering Design, 23(3), 185-194.

Simon, H. A. (1969). The sciences of the artificial (2nd ed.). MIT Press.

Sinha, S., Thomson, A. I., & Kumar, B. (2001). A complexity index for the design process. In International Conference on Engineering Design, Professional Engineering Publishing (pp. 157-163). London, UK.

Sinha, H., & Singh, A. (2006). Measuring project complexity: A project manager’s tool. Architecture, Engineering, Design, and Management, 2, 187-202.

Sinha, H., Kumar, B., & Thomson, A. (2011). Complexity measurement of a project activity. International Journal of Industrial and Systems Engineering, 8(4), 432-448.

Skulmoski, G., Hartman, F., & Krahn, J. (2007). The Delphi study for graduate research. Journal of Information Technology Education, 6, 1-21.

Stillwell, W. G., Seaver, D. A., & Edwards, W. (1981). A comparison of weight approximation techniques in multi-attribute utility decision-making. Organizational Behavior and Human Performance, 28(1), 62-77.

Thomas, J., & Mengel, T. (2008). Preparing project managers to deal with complexity: Advanced project management education. International Journal of Project Management, 26(3), 304-315.

Vidal, L. A., & Marle, F. (2008). Understanding project complexity: implications on project management. Kybernetes, 37(8), 1094-1110.

Vidal, L. A., Marle, F., & Bocquet, J. C. (2011a). Measuring project complexity using the Analytic Hierarchy Process. International Journal of Project Management, 29(6), 718-727.

Vidal, L. A., Marle, F., & Bocquet, J. C. (2011b). Using a Delphi process and the analytic Hierarchy Process (AHP) to evaluate the complexity of projects. Expert Systems with Applications, 38(5), 5388-5405.

Wiendahl, H. P., & Scholtissek, P. (1994). Management and control of complexity in manufacturing. Annals of the CIRP, 43(2), 533-540.

Wood, H., & Ashton, P. (2010). The factors of project complexity. In TG62 - Special Track 18th CIB World Building Congress. Salford, UK.

Xia, B., & Chan, A. P. C. (2012). Measuring complexity for building projects: A Delphi study. Engineering, Construction, and Architectural Management, 19(1), 7-24.

Yeung, J. F. Y., Chan, A. P. C., & Chan, D. W. M. (2009). Developing a performance index for relationship-based construction projects in Australia: Delphi study. Journal of Management in Engineering, 25(2), 59-68.

Yik, F. W., Lai, J. H., Lee, W. L., Chan, K. T., & Chau, C. K. (2012). A Delphi study on building services engineers’ core competence and statutory role in Hong Kong. Journal of Facilities Management, 10(1), 26-44.

Young, S. J., & Jamieson, L. M. (2001). Delivery methodology of the Delphi: A comparison of two approaches. Journal of Park and Recreation Administration, 19(1), 42-58.