Air-void-affected zone in concrete beam under four-point bending fracture
Abstract
A series of numerical simulations were performed on prenotched four-point bending (FPB) concrete beams containing air voids of different sizes and locations by using the finite element method combined with the cohesive crack model. The void-affected zone was proposed for characterizing the effect of a void on a fracture, and its size was determined by moving an air void horizontally until the crack path changed. As a function of air void location and size, the dimensionless affected-zone radius was fitted according to the numerical results. Finally, the fracture processes of the pre-notched FPB concrete beams with randomly distributed voids were simulated numerically, and the affected-zone radius was used to explain the choice of crack paths to verify the prediction. It was found that the prediction is accurate for an isolated affected zone and is roughly approximate for an overlapped one.
Keywords:
concrete, air void, fracture, affected-zone, cohesive model, four-point bendingHow to Cite
Share
License
Copyright (c) 2018 The Author(s). Published by Vilnius Gediminas Technical University.
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Başyiğit, C.; Çomak, B.; Kılınçarslan, Ş.; Serkan Üncü, İ. 2012. Assessment of concrete compressive strength by image processing technique, Construction and Building Materials 37: 526–532. <a href= "https://doi.org/10.1016/j.conbuildmat.2012.07.055" target="_blank"> https://doi.org/10.1016/j.conbuildmat.2012.07.055</a>
Dong, W.; Wu, Z.; Zhou, X.; Dong, L.; Kastiukas, G. 2017. FPZ evolution of mixed mode fracture in concrete: Experimental and numerical, Engineering Failure Analysis 75: 54–70. <a href= "https://doi.org/10.1016/j.engfailanal.2017.01.017" target="_blank"> https://doi.org/10.1016/j.engfailanal.2017.01.017</a>
Dong, W.; Wu, Z.; Zhou, X.; Tan, Y. 2016. Experimental studies on void detection in concrete-filled steel tubes using ultrasound, Construction and Building Materials 128: 154–162. <a href= "https://doi.org/10.1016/j.conbuildmat.2016.10.061" target="_blank"> https://doi.org/10.1016/j.conbuildmat.2016.10.061</a>
Garbacz, A.; Piotrowski, T.; Courard, L.; Kwaśniewski, L. 2017. On the evaluation of interface quality in concrete repair system by means of impact-echo signal analysis, Construction and Building Materials 134: 311–323. <a href= "https://doi.org/10.1016/j.conbuildmat.2016.12.064" target="_blank"> https://doi.org/10.1016/j.conbuildmat.2016.12.064</a>
Guo, S.; Dai, Q.; Sun, X.; Sun, Y. 2016. Ultrasonic scattering measurement of air void size distribution in hardened concrete samples, Construction and Building Materials 113: 415–422. <a href= "https://doi.org/10.1016/j.conbuildmat.2016.03.051" target="_blank"> https://doi.org/10.1016/j.conbuildmat.2016.03.051</a>
Hassani, B.; Hinton, E. 1998. A review of homogenization and topology optimization I–homogenization theory for media with periodic structure, Computers & Structures 69: 707–717. <a href= "https://doi.org/10.1016/S0045-7949(98)00131-X" target="_blank"> https://doi.org/10.1016/S0045-7949(98)00131-X</a>
Hu, J.; Liu, P.; Wang, D.; Oeser, M.; Tan, Y. 2016. Investigation on fatigue damage of asphalt mixture with different air-voids using microstructural analysis, Construction and Building Materials 125: 936–945. <a href= "https://doi.org/10.1016/j.conbuildmat.2016.08.138" target="_blank"> https://doi.org/10.1016/j.conbuildmat.2016.08.138</a>
Huang, Y.; Yan, D.; Yang, Z.; Liu, G. 2016. 2D and 3D homogenization and fracture analysis of concrete based on in-situ X-ray Computed Tomography images and Monte Carlo simulations, Engineering Fracture Mechanics 163: 37–54. <a href= "https://doi.org/10.1016/j.engfracmech.2016.06.018" target="_blank"> https://doi.org/10.1016/j.engfracmech.2016.06.018</a>
Mahoutian, M.; Lubell, A. S.; Bindiganavile, V. S. 2015. Effect of powdered activated carbon on the air void characteristics of concrete containing fly ash, Construction and Building Materials 80: 84–91. <a href= "https://doi.org/10.1016/j.conbuildmat.2015.01.019" target="_blank"> https://doi.org/10.1016/j.conbuildmat.2015.01.019</a>
Misseroni, D.; Movchan, A. B.; Movchan, N. V.; Bigoni, D. 2015. Experimental and analytical insights on fracture trajectories in brittle materials with voids, International Journal of Solids and Structures 63: 219–225. <a href= "https://doi.org/10.1016/j.ijsolstr.2015.03.001" target="_blank"> https://doi.org/10.1016/j.ijsolstr.2015.03.001</a>
Nambiar, E. K. K.; Ramamurthy, K. 2007. Air-void characterisation of foam concrete, Cement and Concrete Research 37: 221–230. <a href= "https://doi.org/10.1016/j.cemconres.2006.10.009" target="_blank"> https://doi.org/10.1016/j.cemconres.2006.10.009</a>
Nguyen, T. T.; Bui, H. H.; Ngo, T. D.; Nguyen, G. D. 2017. Experimental and numerical investigation of influence of air-voids on the compressive behaviour of foamed concrete, Materials & Design 130: 103–119. <a href= "https://doi.org/10.1016/j.matdes.2017.05.054" target="_blank"> https://doi.org/10.1016/j.matdes.2017.05.054</a>
Qin, Y.; Chai, J.; Dang, F. 2013. Improved random aggregate model for numerical simulations of concrete engineering simulations of concrete engineering, Journal of Civil Engineering and Management 19: 285–295. <a href= "https://doi.org/10.3846/13923730.2012.760481" target="_blank"> https://doi.org/10.3846/13923730.2012.760481</a>
Qin, Y.; Chai, J.; Ding, W.; Dang, F.; Lei, M.; Xu, Z. 2016. A quasi real-time approach to investigating the damage and fracture process in plain concrete by X-ray tomography, Journal of Civil Engineering and Management 22: 792–799. <a href= "https://doi.org/10.3846/13923730.2014.914089" target="_blank"> https://doi.org/10.3846/13923730.2014.914089</a>
Rehder, B.; Banh, K.; Neithalath, N. 2014. Fracture behavior of pervious concretes: The effects of pore structure and fibers, Engineering Fracture Mechanics 118: 1–16. <a href= "https://doi.org/10.1016/j.engfracmech.2014.01.015" target="_blank"> https://doi.org/10.1016/j.engfracmech.2014.01.015</a>
Ren, J.; Sun, L. 2017. Characterizing air void effect on fracture of asphalt concrete at low-temperature using discrete element method, Engineering Fracture Mechanics 170: 23–43. <a href= "https://doi.org/10.1016/j.engfracmech.2016.11.030" target="_blank"> https://doi.org/10.1016/j.engfracmech.2016.11.030</a>
Ren, W.; Yang, Z.; Sharma, R.; Zhang, C.; Withers, P. J. 2015. Two-dimensional X-ray CT image based meso-scale fracture modelling of concrete, Engineering Fracture Mechanics 133: 24–39. <a href= "https://doi.org/10.1016/j.engfracmech.2014.10.016" target="_blank"> https://doi.org/10.1016/j.engfracmech.2014.10.016</a>
Valentini, M.; Serkov, S. K.; Bigoni, D.; Movchan, A. B. 1999. Crack propagation in a brittle elastic material with defects, Journal of Applied Mechanics 66: 79–86. <a href= "https://doi.org/10.1115/1.2789172" target="_blank"> https://doi.org/10.1115/1.2789172</a>
Wang, X.; Yang, Z. J.; Yates, J. R.; Jivkov, A. P.; Zhang, C. 2015. Monte Carlo simulations of mesoscale fracture modelling of concrete with random aggregates and pores, Construction and Building Materials 75: 35–45. <a href= "https://doi.org/10.1016/j.conbuildmat.2014.09.069" target="_blank"> https://doi.org/10.1016/j.conbuildmat.2014.09.069</a>
Wang, X.; Zhang, M.; Jivkov, A. P. 2016. Computational technology for analysis of 3D meso-structure effects on damage and failure of concrete, International Journal of Solids and Structures 80: 310–333. <a href= "https://doi.org/10.1016/j.ijsolstr.2015.11.018" target="_blank"> https://doi.org/10.1016/j.ijsolstr.2015.11.018</a>
Xie, Y.; Corr, D. J.; Jin, F.; Zhou, H.; Shah, S. P. 2015. Experimental study of the interfacial transition zone (ITZ) of model rock-filled concrete (RFC), Cement and Concrete Composites 55: 223–231. <a href= "https://doi.org/10.1016/j.cemconcomp.2014.09.002" target="_blank"> https://doi.org/10.1016/j.cemconcomp.2014.09.002</a>
Xu, Y.; Chen, S. 2016. A method for modeling the damage behavior of concrete with a three-phase mesostructure. Construction and Building Materials 102: 26–38. <a href= "https://doi.org/10.1016/j.conbuildmat.2015.10.151" target="_blank"> https://doi.org/10.1016/j.conbuildmat.2015.10.151</a>
Yang, Z. J.; Su, X. T.; Chen, J. F.; Liu, G. H. 2009. Monte Carlo simulation of complex cohesive fracture in random heterogeneous quasi-brittle materials, International Journal of Solids and Structures 46: 3222–3234. <a href= "https://doi.org/10.1016/j.ijsolstr.2009.04.013" target="_blank"> https://doi.org/10.1016/j.ijsolstr.2009.04.013</a>
Yin, A.; Yang, X.; Gao, H.; Zhu, H. 2012. Tensile fracture simulation of random heterogeneous asphalt mixture with cohesive crack model, Engineering Fracture Mechanics 92: 40–55. <a href= "https://doi.org/10.1016/j.engfracmech.2012.05.016" target="_blank"> https://doi.org/10.1016/j.engfracmech.2012.05.016</a>
Yin, A.; Yang, X.; Zeng, G.; Gao, H. 2014. Fracture simulation of pre-cracked heterogeneous asphalt mixture beam with movable three-point bending load, Construction and Building Materials 65: 232–242. <a href= "https://doi.org/10.1016/j.conbuildmat.2014.04.119" target="_blank"> https://doi.org/10.1016/j.conbuildmat.2014.04.119</a>
Yin, A.; Yang, X.; Zeng, G.; Gao, H. 2015. Experimental and numerical investigation of fracture behavior of asphalt mixture under direct shear loading, Construction and Building Materials 86: 21–32. <a href= "https://doi.org/10.1016/j.conbuildmat.2015.03.099" target="_blank"> https://doi.org/10.1016/j.conbuildmat.2015.03.099</a>
Zhang, C.; Yang, X.; Gao, H.; Zhu, H. 2016. Heterogeneous fracture simulation of three-point bending plain-concrete beam with double notches, Acta Mechanica Solida Sinica 29: 232–244. <a href= "https://doi.org/10.1016/S0894-9166(16)30158-6" target="_blank"> https://doi.org/10.1016/S0894-9166(16)30158-6</a>
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2018 The Author(s). Published by Vilnius Gediminas Technical University.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.