Developing a data-driven failure decision-making framework for sustainable urban water management projects

    Ahmed Farouk Kineber Info
    Nehal Elshaboury Info
    Mohammad Alhusban Info
    Tarek Zayed Info
    Salah K. Elsayed Info
    Mohamad Alkersh Info
    Ayman Altuwaim Info
DOI: https://doi.org/10.3846/jcem.2026.24804

Abstract

Several degradation factors significantly impact the durability of water pipes in urban areas. However, limited research has comprehensively prioritized these factors to support data-driven maintenance and renewal decisions. Addressing this gap, this study identifies and ranks the failure factors affecting water pipeline infrastructure. A survey of 125 Egyptian water industry experts was conducted, and the collected data were analyzed using partial least squares-structural equation modeling as the decision-making framework. By incorporating insights from previous research and expert opinions, the research developed a robust failure decision-making model that provided significant insights into the primary factors contributing to water pipeline failures. Model analysis revealed that the “operational factor”, with an impact value of 0.543, was the most critical group of factors affecting pipeline failure. Following closely with an impact value of 0.480, was the “static factor”. Natural disasters (0.373), climate and weather conditions (0.325), and soil conditions (0.300) also contributed considerably. Following closely were “dynamic loads” (0.276), “aging and environmental factors” (0.250), and “third-party factors” (0.200), which had the least impact on the failure of the pipeline. This study has developed a novel failure decision-making model by synthesizing insights from previous studies, expert opinions, and empirical data on water pipeline failure.

 

Keywords:

sustainable management, decision-making, water pipelines

How to Cite

Kineber, A. F., Elshaboury, N., Alhusban, M., Zayed, T., Elsayed, S. K., Alkersh, M., & Altuwaim, A. (2026). Developing a data-driven failure decision-making framework for sustainable urban water management projects. Journal of Civil Engineering and Management, 32(1), 52–67. https://doi.org/10.3846/jcem.2026.24804

Share

Published in Issue
February 2, 2026
Abstract Views
143

References

Abdel‐Mottaleb, N., Ghasemi Saghand, P., Charkhgard, H., & Zhang, Q. (2019). An exact multiobjective optimization approach for evaluating water distribution infrastructure criticality and geospatial interdependence. Water Resources Research, 55(7), 5255–5276. https://doi.org/10.1029/2018WR024063

Abidin, N. Z., & Pasquire, C. L. (2007). Revolutionize value management: A mode towards sustainability. International Journal of Project Management, 25(3), 275–282. https://doi.org/10.1016/j.ijproman.2006.10.005

Aboelmaged, M. (2018). The drivers of sustainable manufacturing practices in Egyptian SMEs and their impact on competitive capabilities: A PLS-SEM model. Journal of Cleaner Production, 175, 207–221. https://doi.org/10.1016/j.jclepro.2017.12.053

Adabre, M. A., Chan, A. P., Edwards, D. J., & Adinyira, E. (2021). Assessing critical risk factors (CRFs) to sustainable housing: The perspective of a sub-Saharan African country. Journal of Building Engineering, 41, Article 102385. https://doi.org/10.1016/j.jobe.2021.102385

Aghimien, D. O., Oke, A. E., & Aigbavboa, C. O. (2018). Barriers to the adoption of value management in developing countries. Engineering, Construction and Architectural Management, 25(7), 818–834. https://doi.org/10.1108/ECAM-04-2017-0070

Aibinu, A. A., & Al-Lawati, A. M. (2010). Using PLS-SEM technique to model construction organizations’ willingness to participate in e-bidding. Automation in Construction, 19(6), 714–724. https://doi.org/10.1016/j.autcon.2010.02.016

Al-Ashmori, Y. Y., Othman, I., Rahmawati, Y., Amran, Y. M., Sabah, S. A., Rafindadi, A. D. U., & Mikić, M. (2020). BIM benefits and its influence on the BIM implementation in Malaysia. Ain Shams Engineering Journal, 11(4), 1013–1019. https://doi.org/10.1016/j.asej.2020.02.002

Alkasseh, J. M., Adlan, M. N., Abustan, I., Aziz, H. A., & Hanif, A. B. M. (2013). Applying minimum night flow to estimate water loss using statistical modeling: A case study in Kinta Valley, Malaysia. Water Resources Management, 27, 1439–1455. https://doi.org/10.1007/s11269-012-0247-2

Almheiri, Z., Meguid, M., & Zayed, T. (2020). Intelligent approaches for predicting failure of water mains. Journal of Pipeline Systems Engineering and Practice, 11(4), Article 04020044. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000485

Almheiri, Z., Meguid, M., & Zayed, T. (2023). Review of critical factors affecting the failure of water pipeline infrastructure. Journal of Water Resources Planning and Management, 149(10), Article 03123001. https://doi.org/10.1061/JWRMD5.WRENG-5896

Al-Otaibi, A., & Kineber, A. F. (2023). Identifying and assessing health and safety program implementation barriers in the construction industry: A case of Saudi Arabia. Applied Sciences, 13(4), Article 2630. https://doi.org/10.3390/app13042630

Amos, D., Au-Yong, C. P., & Musa, Z. N. (2021). The mediating effects of finance on the performance of hospital facilities management services. Journal of Building Engineering, 34, Article 101899. https://doi.org/10.1016/j.jobe.2020.101899

Arsénio, A. M., Dheenathayalan, P., Hanssen, R., Vreeburg, J., & Rietveld, L. (2015). Pipe failure predictions in drinking water systems using satellite observations. Structure and Infrastructure Engineering, 11(8), 1102–1111. https://doi.org/10.1080/15732479.2014.938660

Așchilean, I., Iliescu, M., Ciont, N., & Giurca, I. (2018). The unfavourable impact of street traffic on water distribution pipelines. Water, 10(8), Article 1086. https://doi.org/10.3390/w10081086

Baldassarre, B., Keskin, D., Diehl, J. C., Bocken, N., & Calabretta, G. (2020). Implementing sustainable design theory in business practice: A call to action. Journal of Cleaner Production, 273, Article 123113. https://doi.org/10.1016/j.jclepro.2020.123113

Barakat, M. S., Naayem, J. H., Baba, S. S., Kanso, F. A., Borgi, S. F., Arabian, G. H., & Nahlawi, F. N. (2016). Egypt economic report: Between the recovery of the domestic economy and the burden of external sector challenges. http://www.bankaudigroup.com/

Barton, N. A., Farewell, T. S., & Hallett, S. H. (2020). Using generalized additive models to investigate the environmental effects on pipe failure in clean water networks. Npj Clean Water, 3(1), Article 31. https://doi.org/10.1038/s41545-020-0077-3

Bouchart, F., & Goulter, I. (1991). Reliability improvements in design of water distribution networks recognizing valve location. Water Resources Research, 27(12), 3029–3040. https://doi.org/10.1029/91WR00590

Boxall, J. B., O’Hagan, A., Pooladsaz, S., Saul, A. J., & Unwin, D. M. (2007, June). Estimation of burst rates in water distribution mains. Proceedings of the Institution of Civil Engineers-Water Management, 160(2), 73–82. https://doi.org/10.1680/wama.2007.160.2.73

Broccardo, L., & Zicari, A. (2020). Sustainability as a driver for value creation: A business model analysis of small and medium entreprises in the Italian wine sector. Journal of Cleaner Production, 259, Article 120852. https://doi.org/10.1016/j.jclepro.2020.120852

Chaudry, T. S. (2009). Fibre-optic sensors condition monitoring and modelling of water mains in expansive clays [Master’s thesis]. The University of Manitoba.

Chen, Z., Awan, U., Nassani, A. A., Al-Aiban, K. M., & Zaman, K. (2025). Enhancing sustainable growth in the global south: The role of mineral resource management, supply chain efficiency, technology advancement, and local downstream processing. Resources Policy, 100, Article 105451. https://doi.org/10.1016/j.resourpol.2024.105451

Choon, T. W., Aik, L. K., Aik, L. E., & Hin, T. T. (2012). Investigation of water hammer effect through pipeline system. International Journal on Advanced Science, Engineering and Information Technology, 2(3), 246–251. https://doi.org/10.18517/ijaseit.2.3.196

Chowdhury, R. K., & Rajput, M. A. (2016). Leakage and failures of water distribution mains in the city of Al Ain, UAE. Water Practice and Technology, 11(4), 806–814. https://doi.org/10.2166/wpt.2016.086

Claudio, K., Couallier, V., & Le Gat, Y. (2014). Integration of time-dependent covariates in recurrent events modelling: Application to failures on drinking water networks. Journal de la Société Française de Statistique, 155(3), 62–77.

Daoud, A. O., Othman, A., Robinson, H., & Bayati, A. (2018, March). Towards a green materials procurement: Investigating the Egyptian green pyramid rating system. In 3rd International Green Heritage Conference, Cairo, Egypt.

Das, C. P., Swain, B. K., Goswami, S., & Das, M. (2021). Prediction of traffic noise induced annoyance: A two-staged SEM-Artificial Neural Network approach. Transportation Research Part D: Transport and Environment, 100, Article 103055. https://doi.org/10.1016/j.trd.2021.103055

De Villiers, M. (2015). How to... design for temperature variations in PVC pipe: how to... SABI Magazine-Tydskrif, 7(4), 22–23.

Durdyev, S., Ismail, S., Ihtiyar, A., Bakar, N. F. S. A., & Darko, A. (2018). A partial least squares structural equation modeling (PLS-SEM) of barriers to sustainable construction in Malaysia. Journal of Cleaner Production, 204, 564–572. https://doi.org/10.1016/j.jclepro.2018.08.304

El-Abbasy, M. S., Zayed, T., El Chanati, H., Mosleh, F., Senouci, A., & Al-Derham, H. (2019). Simulation-based deterioration patterns of water pipelines. Structure and Infrastructure Engineering, 15(7), 965–982. https://doi.org/10.1080/15732479.2019.1599965

Elshaboury, N., & Marzouk, M. (2020, October). Comparing machine learning models for predicting water pipelines condition. In 2020 2nd Novel Intelligent and Leading Emerging Sciences Conference (NILES) (pp. 134–139). IEEE. https://doi.org/10.1109/NILES50944.2020.9257945

Elshaboury, N., & Marzouk, M. (2022). Prioritizing water distribution pipelines rehabilitation using machine learning algorithms. Soft Computing, 26(11), 5179–5193. https://doi.org/10.1007/s00500-022-06970-8

Elshaboury, N., Attia, T., & Marzouk, M. (2020). Application of evolutionary optimization algorithms for rehabilitation of water distribution networks. Journal of Construction Engineering and Management, 146(7), Article 04020069. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001856

Fang, Z., Gao, X., & Sun, C. (2020). Do financial development, urbanization and trade affect environmental quality? Evidence from China. Journal of Cleaner Production, 259, Article 120892. https://doi.org/10.1016/j.jclepro.2020.120892

Fares, H., & Zayed, T. (2010). Hierarchical fuzzy expert system for risk of failure of water mains. Journal of Pipeline Systems Engineering and Practice, 1(1), 53–62. https://doi.org/10.1061/(ASCE)PS.1949-1204.0000037

Farewell, T. S., Jude, S., & Pritchard, O. (2018). How the impacts of burst water mains are influenced by soil sand content. Natural Hazards and Earth System Sciences, 18(11), 2951–2968. https://doi.org/10.5194/nhess-18-2951-2018

Farrokhirad, E., & Gheitarani, N. (2024). How green wall imploratory strategies can be facilitated and optimized through public engagement?. European Online Journal of Natural and Social Sciences, 13(2), 128–143.

Garmabaki, A. H. S., Kumar, U., Thaduri, A., Hedström, A., Laue, J., Marklund, S., ... & Indahl, S. (2019). A survey on underground pipelines and railway infrastructure at cross-sections. In 29th European Safety and Reliability Conference (ESREL 2019) (pp. 1094–1101), Hannover, Germany. Research Publishing Services. https://doi.org/10.3850/978-981-11-2724-3_0037-cd

Gassman, S. L., Sasanakul, I., Pierce, C. E., Gheibi, E., Starcher, R., Ovalle, W., & Rahman, M. (2017). Failures of pipe culverts from a 1000-year rainfall event in South Carolina. In Geotechnical Frontiers 2017 (pp. 114–124), Orlando, Florida, USA. https://doi.org/10.1061/9780784480441.013

Ghidaoui, M. S., Zhao, M., McInnis, D. A., & Axworthy, D. H. (2005). A review of water hammer theory and practice. Applied Mechanics Reviews, 58(1), 49–76. https://doi.org/10.1115/1.1828050

Gould, S. J. F., Boulaire, F. A., Burn, S., Zhao, X. L., & Kodikara, J. K. (2011). Seasonal factors influencing the failure of buried water reticulation pipes. Water Science and Technology, 63(11), 2692–2699. https://doi.org/10.2166/wst.2011.507

Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a silver bullet. Journal of Marketing Theory and Practice, 19(2), 139–152. https://doi.org/10.2753/MTP1069-6679190202

Hamed, M. M., Elsayad, M. A., Mahfouz, S. Y., & Khadr, W. M. H. (2022). Graphical user interface for water distribution network pressure-driven analysis using artificial elements. Sustainable Water Resources Management, 8(3), Article 89. https://doi.org/10.1007/s40899-022-00675-4

Harris, S. L. (1958). Dynamic loads on the teeth of spur gears. Proceedings of the Institution of Mechanical Engineers, 172(1), 87–112. https://doi.org/10.1243/PIME_PROC_1958_172_017_02

Henseler, J., Hubona, G., & Ray, P. A. (2016). Using PLS path modeling in new technology research: Updated guidelines. Industrial Management & Data Systems, 116(1), 2–20. https://doi.org/10.1108/IMDS-09-2015-0382

Hu, Y., & Hubble, D. W. (2007). Factors contributing to the failure of asbestos cement water mains. Canadian Journal of Civil Engineering, 34(5), 608–621. https://doi.org/10.1139/l06-162

Hu, Y., Chan, A. P., Le, Y., Xu, Y., & Shan, M. (2016). Developing a program organization performance index for delivering construction megaprojects in China: Fuzzy synthetic evaluation analysis. Journal of Management in Engineering, 32(4), Article 05016007. https://doi.org/10.1061/(ASCE)ME.1943-5479.0000432

Jekale, W. (2004). Performance for public construction projects in developing countries: Federal road and educational building projects in Ethiopia. Norwegian University of Science & Technology.

Jun, H. J., Park, J. K., & Bae, C. H. (2020). Factors affecting steel water-transmission pipe failure and pipe-failure mechanisms. Journal of Environmental Engineering, 146(6), Article 04020034. https://doi.org/10.1061/(ASCE)EE.1943-7870.0001692

Kabir, G., Tesfamariam, S., Francisque, A., & Sadiq, R. (2015a). Evaluating risk of water mains failure using a Bayesian belief network model. European Journal of Operational Research, 240(1), 220–234. https://doi.org/10.1016/j.ejor.2014.06.033

Kabir, G., Tesfamariam, S., & Sadiq, R. (2015b). Prediction of water mains failure: A Bayesian approach. In International Conference on Applications of Statistics and Probability, Vancouver, Canada.

Kerwin, S., Garcia de Soto, B., Adey, B., Sampatakaki, K., & Heller, H. (2023). Combining recorded failures and expert opinion in the development of ANN pipe failure prediction models. Sustainable and Resilient Infrastructure, 8(1), 86–108. https://doi.org/10.1080/23789689.2020.1787033

Khadr, W. M. H., Hamed, M. M., & Nashwan, M. S. (2022). Pressure Driven analysis of water distribution systems for preventing siphonic flow. Journal of Hydro-Environment Research, 44, 102–109. https://doi.org/10.1016/j.jher.2022.09.001

Kim, S. Y., Lee, Y. S., & Nguyen, V. T. (2016). Barriers to applying value management in the Vietnamese construction industry. Journal of Construction in Developing Countries, 21(2), 55–80. https://doi.org/10.21315/jcdc2016.21.2.4

Kineber, A. F., Mohandes, S. R., ElBehairy, H., Chileshe, N., Zayed, T., & Fathy, U. (2022a). Towards smart and sustainable urban management: A novel value engineering decision-making model for sewer projects. Journal of Cleaner Production, 375, Article 134069. https://doi.org/10.1016/j.jclepro.2022.134069

Kineber, A. F., Uddin, M. S., & Momena, A. F. (2022b). Exploring the critical success factors of value management implementation for sustainable residential building project: A stationary analysis approach. Sustainability, 14(23), Article 16215. https://doi.org/10.3390/su142316215

Kineber, A. F., Oke, A. E., Hamed, M. M., Rached, E. F., & Elmansoury, A. (2023). Modeling the impact of overcoming the green walls implementation barriers on sustainable building projects: A novel mathematical partial least squares – SEM method. Mathematics, 11(3), Article 504. https://doi.org/10.3390/math11030504

Kleiner, Y., & Rajani, B. (1999). Using limited data to assess future needs. Journal AWWA, 91(7), 47–61. https://doi.org/10.1002/j.1551-8833.1999.tb08664.x

Kleiner, Y., & Rajani, B. (2001). Comprehensive review of structural deterioration of water mains: Statistical models. Urban Water, 3(3), 131–150. https://doi.org/10.1016/S1462-0758(01)00033-4

Kleiner, Y., Rajani, B., & Wang, S. (2007). Consideration of static and dynamic effects to plan water main renewal. In Proceedings of Middle East Water 2007, 4th International Exhibition and Conference for Water Technology. National Research Council Canada.

Kutyłowska, M., & Hotloś, H. (2014). Failure analysis of water supply system in the Polish city of Głogów. Engineering Failure Analysis, 41, 23–29. https://doi.org/10.1016/j.engfailanal.2013.07.019

Latifi, M., Beig Zali, R., Javadi, A. A., & Farmani, R. (2024). Efficacy of tree-based models for pipe failure prediction and condition assessment: A comprehensive review. Journal of Water Resources Planning and Management, 150(7), Article 03124001. https://doi.org/10.1061/JWRMD5.WRENG-6334

Laukkanen, M., & Tura, N. (2020). The potential of sharing economy business models for sustainable value creation. Journal of Cleaner Production, 253, Article 120004. https://doi.org/10.1016/j.jclepro.2020.120004

Leguina, A. (2015). A primer on partial least squares structural equation modeling (PLS-SEM). International Journal of Research & Method in Education, 38(2), 220–221. https://doi.org/10.1080/1743727X.2015.1005806

Lichtenthaler, U. (2023). Sustainability skills and sustainable natives: Key competencies and maturity model for sustainability management. Journal of Innovation Management, 11(3), 95–113. https://doi.org/10.24840/2183-0606_011.003_0005

Lu, H., Xu, Z. D., Zang, X., Xi, D., Iseley, T., Matthews, J. C., & Wang, N. (2023). Leveraging machine learning for pipeline condition assessment. Journal of Pipeline Systems Engineering and Practice, 14(3), Article 04023024. https://doi.org/10.1061/JPSEA2.PSENG-1464

Moerman, A., Wols, B. A., & Diemel, R. (2016). The effects of traffic loads on drinking water main failure frequencies in the Netherlands. Water Practice and Technology, 11(3), 524–530. https://doi.org/10.2166/wpt.2016.057

Mohammed Abdelkader, E., Zayed, T., Elshaboury, N., & Taiwo, R. (2025). A hybrid Bayesian optimization-based deep learning model for modeling the condition of saltwater pipes in Hong Kong. International Journal of Construction Management, 25(1), 46–62. https://doi.org/10.1080/15623599.2024.2304392

Mohandes, S. R., Kineber, A. F., Abdelkhalek, S., Kaddoura, K., Elsayed, M., Hosseini, M. R., & Zayed, T. (2022). Evaluation of the critical factors causing sewer overflows through modeling of structural equations and system dynamics. Journal of Cleaner Production, 375, Article 134035. https://doi.org/10.1016/j.jclepro.2022.134035

Mora-Rodríguez, J., Delgado-Galván, X., Ramos, H. M., & López-Jiménez, P. A. (2014). An overview of leaks and intrusion for different pipe materials and failures. Urban Water Journal, 11(1), 1–10. https://doi.org/10.1080/1573062X.2012.739630

Oke, A. E., Kineber, A. F., Olanrewaju, O. I., Omole, O., Jamir Singh, P. S., Samsurijan, M. S., & Ramli, R. A. (2022). Exploring the 4IR drivers for sustainable residential building delivery from social work residential perspective – a structural equation modelling approach. Sustainability, 15(1), Article 468. https://doi.org/10.3390/su15010468

Pham, D. H., Kim, B., Lee, J., Ahn, A. C., & Ahn, Y. (2020). A comprehensive analysis: Sustainable trends and awarded LEED 2009 credits in Vietnam. Sustainability, 12(3), Article 852. https://doi.org/10.3390/su12030852

Pietrucha-Urbanik, K. (2015). Failure analysis and assessment on the exemplary water supply network. Engineering Failure Analysis, 57, 137–142. https://doi.org/10.1016/j.engfailanal.2015.07.036

Pratt, C., Yang, H., Hodkiewicz, M., & Oldham, S. (2011). Factors influencing pipe failures in the WA environment. In Co-operative Education for Enterprise Development CEED Seminar Proceedings. The University of Western Australia.

Qi, Z., Zheng, F., Guo, D., Zhang, T., Shao, Y., Yu, T., Zhang, K., & Maier, H. R. (2018). A comprehensive framework to evaluate hydraulic and water quality impacts of pipe breaks on water distribution systems. Water Resources Research, 54(10), 8174–8195. https://doi.org/10.1029/2018WR022736

Qu, Z., Jin, S., Wu, L., An, Y., Liu, Y., Fang, R., & Yang, J. (2019). Influence of water flow velocity on fouling removal for pipeline based on eco-friendly ultrasonic guided wave technology. Journal of Cleaner Production, 240, Article 118173. https://doi.org/10.1016/j.jclepro.2019.118173

Rajeev, P., Kodikara, J., Robert, D., Zeman, P., & Rajani, B. (2014). Factors contributing to large diameter water pipe failure. Water Asset Management International, 10(3), 9–14.

Ranesh, A. (2014). The integration of risk and value management: A framework for public private partnership project management [Doctoral dissertation]. University of South Australia.

Robles-Velasco, A., Cortés, P., Muñuzuri, J., & Onieva, L. (2020). Prediction of pipe failures in water supply networks using logistic regression and support vector classification. Reliability Engineering & System Safety, 196, Article 106754. https://doi.org/10.1016/j.ress.2019.106754

Rowe, R. K. (2005). Long-term performance of contaminant barrier systems. Geotechnique, 55(9), 631–678. https://doi.org/10.1680/geot.2005.55.9.631

Sarhadi, F., & Rad, V. B. (2020). The structural model for thermal comfort based on perceptions individuals in open urban spaces. Building and Environment, 185, Article 107260. https://doi.org/10.1016/j.buildenv.2020.107260

Shaban, I. A., Eltoukhy, A. E., & Zayed, T. (2023). Systematic and scientometric analyses of predictors for modelling water pipes deterioration. Automation in Construction, 149, Article 104710. https://doi.org/10.1016/j.autcon.2022.104710

Shah, R., & Goldstein, S. M. (2006). Use of structural equation modeling in operations management research: Looking back and forward. Journal of Operations Management, 24(2), 148–169. https://doi.org/10.1016/j.jom.2005.05.001

Shi, F. (2018). Data-driven predictive analytics for water infrastructure condition assessment and management [Doctoral dissertation]. University of British Columbia.

Shields, P. M., & Tajalli, H. (2006). Intermediate theory: The missing link in successful student scholarship. Journal of Public Affairs Education, 12(3), 313–334. https://doi.org/10.1080/15236803.2006.12001438

Shirzad, A., Tabesh, M., & Farmani, R. (2014). A comparison between performance of support vector regression and artificial neural network in prediction of pipe burst rate in water distribution networks. KSCE Journal of Civil Engineering, 18, 941–948. https://doi.org/10.1007/s12205-014-0537-8

Shook, C. L., Ketchen Jr, D. J., Hult, G. T. M., & Kacmar, K. M. (2004). An assessment of the use of structural equation modeling in strategic management research. Strategic Management Journal, 25(4), 397–404. https://doi.org/10.1002/smj.385

Strandholm, K., Kumar, K., & Subramanian, R. (2004). Examining the interrelationships among perceived environmental change, strategic response, managerial characteristics, and organizational performance. Journal of Business Research, 57(1), 58–68. https://doi.org/10.1016/S0148-2963(02)00285-0

Taiwo, R., Shaban, I. A., & Zayed, T. (2023). Development of sustainable water infrastructure: A proper understanding of water pipe failure. Journal of Cleaner Production, 398, Article 136653. https://doi.org/10.1016/j.jclepro.2023.136653

Tangi, L., Janssen, M., Benedetti, M., & Noci, G. (2021). Digital government transformation: A structural equation modelling analysis of driving and impeding factors. International Journal of Information Management, 60, Article 102356. https://doi.org/10.1016/j.ijinfomgt.2021.102356

Tavakoli, R., Sharifara, A., & Najafi, M. (2020, May). Artificial neural networks and adaptive neuro-fuzzy models to predict remaining useful life of water pipelines. In World Environmental and Water Resources Congress 2020 (pp. 191–204). American Society of Civil Engineers, Reston, VA. https://doi.org/10.1061/9780784482988.019

Tenenhaus, M. (2008). Component-based structural equation modelling. Total Quality Management, 19(7–8), 871–886. https://doi.org/10.1080/14783360802159543

Ul-Durar, S., Awan, U., Varma, A., Memon, S., & Mention, A. L. (2023). Integrating knowledge management and orientation dynamics for organization transition from eco-innovation to circular economy. Journal of Knowledge Management, 27(8), 2217–2248. https://doi.org/10.1108/JKM-05-2022-0424

Wang, R., Wang, F., Xu, J., Zhong, Y., & Li, S. (2019). Full-scale experimental study of the dynamic performance of buried drainage pipes under polymer grouting trenchless rehabilitation. Ocean Engineering, 181, 121–133. https://doi.org/10.1016/j.oceaneng.2019.04.009

Wilson, D., Filion, Y. R., & Moore, I. D. (2015). Identifying factors that influence the factor of safety and probability of failure of large-diameter, cast iron water mains with a mechanistic, stochastic model: A case study in the City of Hamilton. Procedia Engineering, 119, 130–138. https://doi.org/10.1016/j.proeng.2015.08.863

Wilson, D., Moore, I., & Filion, Y. (2017). Using sensitivity analysis to identify the critical factors that lower the factor of safety of large-diameter cast iron mains. Urban Water Journal, 14(7), 685–693. https://doi.org/10.1080/1573062X.2016.1236137

Wolfe, T. F. (1946). How to prevent breaks in cast-iron pipe. Journal AWWA, 38(6), 765–771. https://doi.org/10.1002/j.1551-8833.1946.tb16137.x

Wols, B. A., & Van Thienen, P. (2014). Impact of weather conditions on pipe failure: A statistical analysis. AQUA – Journal of Water Supply: Research and Technology, 63(3), 212–223. https://doi.org/10.2166/aqua.2013.088

Wols, B. A., Vogelaar, A., Moerman, A., & Raterman, B. (2019). Effects of weather conditions on drinking water distribution pipe failures in the Netherlands. Water Supply, 19(2), 404–416. https://doi.org/10.2166/ws.2018.085

Wong, K. K. K. (2013). Partial least squares structural equation modeling (PLS-SEM) techniques using SmartPLS. Marketing Bulletin, 24, 1–32.

Wong, L. W., Leong, L. Y., Hew, J. J., Tan, G. W. H., & Ooi, K. B. (2020). Time to seize the digital evolution: Adoption of blockchain in operations and supply chain management among Malaysian SMEs. International Journal of Information Management, 52, Article 101997. https://doi.org/10.1016/j.ijinfomgt.2019.08.005

Yamijala, S., Guikema, S. D., & Brumbelow, K. (2009). Statistical models for the analysis of water distribution system pipe break data. Reliability Engineering & System Safety, 94(2), 282–293. https://doi.org/10.1016/j.ress.2008.03.011

Yaseen, Z. M., Ali, Z. H., Salih, S. Q., & Al-Ansari, N. (2020). Prediction of risk delay in construction projects using a hybrid artificial intelligence model. Sustainability, 12(4), Article 1514. https://doi.org/10.3390/su12041514

Yazdekhasti, S., Piratla, K. R., Atamturktur, S., & Khan, A. A. (2017). Novel vibration-based technique for detecting water pipeline leakage. Structure and Infrastructure Engineering, 13(6), 731–742. https://doi.org/10.1080/15732479.2016.1188318

Yin, Q., Wang, Y., Xu, Z., Wan, K., & Wang, D. (2022). Factors influencing green transformation efficiency in China’s mineral resource-based cities: Method analysis based on IPAT-E and PLS-SEM. Journal of Cleaner Production, 330, Article 129783. https://doi.org/10.1016/j.jclepro.2021.129783

Zaid Alkilani, S. (2018). Performance measurement and improvement model for small and medium contractors in developing countries [Doctoral dissertation]. UNSW Sydney.

Zainul-Abidin, N., & Pasquire, C. L. (2003). Moving towards sustainability through value management. In Proceedings of the Joint International Symposium of CIB Working Commissions W55 and W107 (Vol. 2, pp. 258–268), Singapore.

Zamenian, H., Mannering, F. L., Abraham, D. M., & Iseley, T. (2017). Modeling the frequency of water main breaks in water distribution systems: Random-parameters negative-binomial approach. Journal of Infrastructure Systems, 23(2), Article 04016035. https://doi.org/10.1061/(ASCE)IS.1943-555X.0000336

Zangenehmadar, Z., & Moselhi, O. (2016a). Assessment of remaining useful life of pipelines using different artificial neural networks models. Journal of Performance of Constructed Facilities, 30(5), Article 04016032. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000886

Zangenehmadar, Z., & Moselhi, O. (2016b). Prioritizing deterioration factors of water pipelines using Delphi method. Measurement, 90, 491–499. https://doi.org/10.1016/j.measurement.2016.05.001

View article in other formats

CrossMark check

CrossMark logo

Published

2026-02-02

Issue

Section

Articles

How to Cite

Kineber, A. F., Elshaboury, N., Alhusban, M., Zayed, T., Elsayed, S. K., Alkersh, M., & Altuwaim, A. (2026). Developing a data-driven failure decision-making framework for sustainable urban water management projects. Journal of Civil Engineering and Management, 32(1), 52–67. https://doi.org/10.3846/jcem.2026.24804

Share