Multi-Criteria Decision Methods in the evaluation of social housing projects

DOI: https://doi.org/10.3846/jcem.2025.24425

Abstract

The evaluation of social housing projects is a complex process that requires the consideration of multiple factors and dimensions to make informed decisions to address the emerging challenges of contemporary urbanization and achieve more resilient and sustainable communities. This study's comprehensive review of the existing literature on the use of Multi-Criteria Decision Methods (MCDM) in evaluating social housing projects was undertaken. An exhaustive analysis of a bibliographic set of 93 articles published between 1994 and march 2025 was conducted. It was noted that the articles analyzed different phases of the construction process, from planning and design to implementation and maintenance. Significant trends in the use of MCDM were identified, highlighting the prevalence of crisp number-based approaches and the emergence of modern techniques such as fuzzy logic and neutrosophic logic. Among the most widely used methods were AHP and TOPSIS, both pioneering methods. In addition, there was an increasing focus on sustainability in project evaluation, encompassing environmental, social, economic, and technical aspects. Consequently, this literature review serves as a guide for incorporating multi-criteria evaluation strategies to improve constructability, especially in social housing projects, taking sustainability into consideration.

Keywords:

multi-criteria decision-making, decision making, MCDM, social housing project, social housing, constructability, sustainability

How to Cite

Luque Castillo, X., & Yepes, V. (2025). Multi-Criteria Decision Methods in the evaluation of social housing projects. Journal of Civil Engineering and Management, 31(6), 608–630. https://doi.org/10.3846/jcem.2025.24425

Share

Published in Issue
August 6, 2025
Abstract Views
10

References

Abastante, F., Corrente, S., Greco, S., Ishizaka, A., & Lami, I. M. (2018). Choice architecture for architecture choices: Evaluating social housing initiatives putting together a parsimonious AHP methodology and the Choquet integral. Land Use Policy, 78, 748–762. https://doi.org/10.1016/j.landusepol.2018.07.037

Abbasianjahromi, H., & Rajaie, H. (2012). Developing a project portfolio selection model for contractor firms considering the risk factor. Journal of Civil Engineering and Management, 18(6), 879–889. https://doi.org/10.3846/13923730.2012.734856

Abdel-Malak, F. F., Issa, U. H., Miky, Y. H., & Osman, E. A. (2017). Applying decision-making techniques to civil engineering projects. Beni-Suef University Journal of Basic and Applied Sciences, 6(4), 326–331. https://doi.org/10.1016/j.bjbas.2017.05.004

Abdelrasoul, M. E. I. I., Wang, G., Kim, J.-G. G., Ren, G., Abd-El-Hakeem Mohamed, M., Ali, M. A. M. M., Abdellah, W. R., Abd-El-, M., Mohamed, H., Ali, M. A. M. M., & Abdellah, W. R. (2022). Review on the development of mining method selection to identify new techniques using a cascade-forward backpropagation neural network. Advances in Civil Engineering, 2022, Article 6952492. https://doi.org/10.1155/2022/6952492

Aboutorab, H., Saberi, M., Asadabadi, M. R., Hussain, O., & Chang, E. (2018). ZBWM: The Z-number extension of Best Worst Method and its application for supplier development. Expert Systems with Applications, 107, 115–125. https://doi.org/10.1016/j.eswa.2018.04.015

Adabre, M. A., & Chan, A. P. C. (2020). Towards a sustainability assessment model for affordable housing projects: the perspective of professionals in Ghana. Engineering, Construction and Architectural Management, 27(9), 2523–2551. https://doi.org/10.1108/ECAM-08-2019-0432

Aghazadeh, E., Yildirim, H., & Kuruoglu, M. (2022). A hybrid fuzzy MCDM methodology for optimal structural system selection compatible with sustainable materials in mass-housing projects. Sustainability, 14(20), Article 13559. https://doi.org/10.3390/su142013559

Akadiri, P. O., Chinyio, E. A., & Olomolaiye, P. O. (2012). Design of a sustainable building: A conceptual framework for implementing sustainability in the building sector. Buildings, 2(2), 126–152. https://doi.org/10.3390/buildings2020126

Akola, J., Chakwizira, J., Ingwani, E., & Bikam, P. (2023). An AHP-TOWS analysis of options for promoting disaster risk reduction infrastructure in informal settlements of Greater Giyani Local Municipality, South Africa. Sustainability, 15(1), Article 267. https://doi.org/10.3390/su15010267

Alam Bhuiyan, M. M., & Hammad, A. (2023). A hybrid multi-criteria decision support system for selecting the most sustainable structural material for a multistory building construction. Sustainability, 15(4), Article 3128. https://doi.org/10.3390/su15043128

Ali, H. H., & Al Nsairat, S. F. (2009). Developing a green building assessment tool for developing countries – Case of Jordan. Building and Environment, 44(5), 1053–1064. https://doi.org/10.1016/j.buildenv.2008.07.015

Aljalal, S., Alshibani, A., Al-Homoud, M., & Mazher, K. M. (2023). An integrated decision support framework for selecting envelope and AC systems in hot-humid climate. Building and Environment, 243, Article 110706. https://doi.org/10.1016/j.buildenv.2023.110706

Amorocho, J. A. P., & Hartmann, T. (2022). A multi-criteria decision-making framework for residential building renovation using pairwise comparison and TOPSIS methods. Journal of Building Engineering, 53, Article 104596. https://doi.org/10.1016/j.jobe.2022.104596

Antucheviciene, J., Kala, Z., Marzouk, M., & Vaidogas, E. R. (2015). Solving civil engineering problems by means of fuzzy and stochastic MCDM methods: Current state and future research. Mathematical Problems in Engineering, 2015, Article 362579. https://doi.org/10.1155/2015/362579

Apolinário, B. D., & Kowalski, L. F. (2023). Evaluation of the thermal performance of EPS core panels: A multicriteria approach. Journal of Building Engineering, 76, Article 107157. https://doi.org/10.1016/j.jobe.2023.107157

Armacost, R. L., Componation, P. J., Mullens, M. A., & Swart, W. W. (1994). An AHP framework for prioritizing customer requirements in QFD: an industrialized housing application. IIE Transactions, 26(4), 72–79. https://doi.org/10.1080/07408179408966620

Ashofteh, P. S., Far, S. M., & Golfam, P. (2023). Application of multi-criteria decision-making of CODAS and SWARA in reservoir optimal operation using marine predator algorithm based on game theory. Water Resources Management, 37(11), 4385–4412. https://doi.org/10.1007/s11269-023-03560-7

Balali, V., Zahraie, B., & Roozbahani, A. (2014). Integration of ELECTRE III and PROMETHEE II decision-making methods with an interval approach: Application in selection of appropriate structural systems. Journal of Computing in Civil Engineering, 28(2), 297–314. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000254

Balasbaneh, A. T., & Sher, W. (2021). Life cycle sustainability assessment analysis of different concrete construction techniques for residential building in Malaysia. International Journal of Life Cycle Assessment, 26(7), 1301–1318. https://doi.org/10.1007/s11367-021-01938-6

Ball, J. N., & Srinivasan, V. C. (1994). Using the analytic hierarchy process in-house selection. The Journal of Real Estate Finance and Economics, 9(1), 69–85. https://doi.org/10.1007/BF01153589

Banaitiene, N., Banaitis, A., Kaklauskas, A., & Zavadskas, E. K. (2008). Evaluating the life cycle of a building: A multivariant and multiple criteria approach. Omega, 36(3), 429–441. https://doi.org/10.1016/j.omega.2005.10.010

Baseer, M., Ghiaus, C., Viala, R., Gauthier, N., & Daniel, S. (2023). pELECTRE-Tri: Probabilistic ELECTRE-Tri Method-Application for the energy renovation of buildings. Energies, 16(14), Article 5296. https://doi.org/10.3390/en16145296

Bausys, R., & Juodagalviene, B. (2017). Garage location selection for residential house by WASPAS-SVNS method. Journal of Civil Engineering and Management, 23(3), 421–429. https://doi.org/10.3846/13923730.2016.1268645

Baydaş, M., Yılmaz, M., Jović, Ž., Stević, Ž., Özuyar, S. E. G., & Özçil, A. (2024). A comprehensive MCDM assessment for economic data: success analysis of maximum normalization, CODAS, and fuzzy approaches. Financial Innovation, 10(1), Article 105. https://doi.org/10.1186/s40854-023-00588-x

Baykasoğlu, A., & Gölcük, I. (2015). Development of a novel multiple-attribute decision making model via fuzzy cognitive maps and hierarchical fuzzy TOPSIS. Information Sciences, 301, 75–98. https://doi.org/10.1016/j.ins.2014.12.048

Bianchi, P. F., Yepes, V., & Vitorio, P. C., & Kripka, M. (2021). Study of alternatives for the design of sustainable low-income housing in Brazil. Sustainability, 13(9), Article 4757. https://doi.org/10.3390/su13094757

Bley, A. S. (2002). Administración de operaciones de construcción. Alfaomega.

Brissi, S. G., Debs, L., & Elwakil, E. (2021). A review on the factors affecting the use of offsite construction in multifamily housing in the United States. Buildings, 11(1), Article 5. https://doi.org/10.3390/buildings11010005

Cardenas-Gomez, J. C., Bosch Gonzales, M., & Damiani Lazo, C. A. (2021). Evaluation of reinforced adobe techniques for sustainable reconstruction in Andean seismic zones. Sustainability, 13(9), Article 4955. https://doi.org/10.3390/su13094955

Cardona-Trujillo, H., Peña-Rojas, E., Martínez-Herrera, E., & Mejía-Gil, M. C. (2023). Life conditions of residents in social housing in Medellin, Colombia: A Fuzzy Analytical Hierarchy Process. Cities & Health, 7(1), 112–121. https://doi.org/10.1080/23748834.2022.2122264

Cerón-Palma, I., Sanyé-Mengual, E., Oliver-Solà, J., Montero, J. I., Ponce-Caballero, C., & Rieradevall, J. (2013). Towards a green sustainable strategy for social neighbourhoods in Latin America: Case from social housing in Merida, Yucatan, Mexico. Habitat International, 38(1), 47–56. https://doi.org/10.1016/j.habitatint.2012.09.008

Chadchan, J., Hossiney, N., Tamil Selvan, P. K., & Vijayan, A. (2024). Assessing housing preferences and living conditions of migrant workers in the fringe areas of Bengaluru City, India. Societies, 14(12), Article 261. https://doi.org/10.3390/soc14120261

Chadee, A. A., Martin, H., Chadee, X. T., Bahadoorsingh, S., & Olutoge, F. (2023). Root cause of cost overrun risks in public sector social housing programs in SIDS: Fuzzy synthetic evaluation. Journal of Construction Engineering and Management, 149(11), Article 04023106. https://doi.org/10.1061/JCEMD4.COENG-13402

Chen, Y., & Gallardo, S. (2024). A multi-objective optimization method for the design of a sustainable house in Ecuador by assessing LCC and LCEI. Sustainability, 16(1), Article 168. https://doi.org/10.3390/su16010168

Chen, Y.-L., Cheng, A.-C., Hsueh, S.-L., & Qu, D. (2017). DAHP expected utility based evaluation model for management performance on interior environmental decoration – An example in Taiwan. Eurasia Journal of Mathematics Science and Technology Education, 13(12), 8257–8265. https://doi.org/10.12973/ejmste/78635

Daget, Y. T., & Zhang, H. (2020). Decision-making model for the evaluation of industrialized housing systems in Ethiopia. Engineering, Construction and Architectural Management, 27(1), 296–320. https://doi.org/10.1108/ECAM-05-2018-0212

Daniel, S., & Ghiaus, C. (2023). Multi-criteria decision analysis for energy retrofit of residential buildings: methodology and feedback from real application. Energies, 16(2), Article 902. https://doi.org/10.3390/en16020902

de Azevedo, R. C., de Oliveira Lacerda, R. T., Ensslin, L., Jungles, A. E., & Ensslin, S. R. (2013). Performance measurement to aid decision making in the budgeting process for apartment-building construction: case study using MCDA-C. Journal of Construction Engineering and Management, 139(2), 225–235. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000587

De Brito, M. M., & Evers, M. (2016). Multi-criteria decision-making for flood risk management: A survey of the current state of the art. Natural Hazards and Earth System Sciences, 16(4), 1019–1033. https://doi.org/10.5194/nhess-16-1019-2016

Der, O., Ordu, M., & Başar, G. (2024a). Multi-objective optimization of cutting parameters for polyethylene thermoplastic material by integrating data envelopment analysis and SWARA-Based CoCoSo approach. Osmaniye Korkut Ata Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 7(2), 638–661. https://doi.org/10.47495/okufbed.1338169

Der, O., Ordu, M., & Basar, G. (2024b). Optimization of cutting parameters in manufacturing of polymeric materials for flexible two-phase thermal management systems. Materials Testing, 66(10), 1700–1719. https://doi.org/10.1515/mt-2024-0127

Dezhi, L., Yanchao, C., Hongxia, C., Kai, G., Hui, E. C.-M., & Yang, J. (2016). Assessing the integrated sustainability of a public rental housing project from the perspective of complex eco-system. Habitat International, 53, 546–555. https://doi.org/10.1016/j.habitatint.2016.01.001

Eghbali-Zarch, M., Tavakkoli-Moghaddam, R., Dehghan-Sanej, K., & Kaboli, A. (2022). Prioritizing the effective strategies for construction and demolition waste management using fuzzy IDOCRIW and WASPAS methods. Engineering, Construction and Architectural Management, 29(3), 1109–1138. https://doi.org/10.1108/ECAM-08-2020-0617

Enshassi, A., Kochendoerfer, B., & Al Ghoul, H. (2016). Factors affecting sustainable performance of construction projects during project life cycle phases. International Journal of Sustainable Construction Engineering & Technology, 7(1), 50–68.

Eryuruk, S., Varolgunes, F. K., & Varolgunes, S. (2022). Assessment of stakeholder satisfaction as additive to improve building design quality: AHP-based approach. Journal of Housing and the Built Environment, 37(1), 505–528. https://doi.org/10.1007/s10901-021-09855-8

Falcao, A. P., Machete, R., Gomes, M. C., & Goncalves, A. B. (2021). Spatial multi-criteria decision analysis for rehabilitation priority ranking: A collaborative application to heritage workforce housing sites. International Journal of Architectural Heritage, 15(5), 790–806. https://doi.org/10.1080/15583058.2019.1650132

Fan, Y., Li, H., Zhang, M., Xu, J., & Chen, Y. (2025). Research on green assessment method for prefabricated buildings. Proceedings of the Institution of Civil Engineers – Engineering Sustainability, 178(1), 67–76. https://doi.org/10.1680/jensu.23.00021

Fang, Y., Yuan, Y., Yin, M., Zhou, S., Xu, J., & Liu, K. (2022). Site selection of affordable housing in direct management area under Jiangbei’s New District in Nanjing. Land, 11(9), Article 1403. https://doi.org/10.3390/land11091403

Faraji, A., Agha, T. M. H., Arya, S. H., Ghasemi, E., & Rahnamayiezekavat, P. (2024). Hybrid study of quantitative–qualitative analysis to recognize the most cost-effectiveness criteria to develop affordable mass housing. Buildings, 14(4), Article 1057. https://doi.org/10.3390/buildings14041057

Figueiredo, K., Pierott, R., Hammad, A. W. A., & Haddad, A. (2021). Sustainable material choice for construction projects: A life cycle sustainability assessment framework based on BIM and Fuzzy-AHP. Building and Environment, 196, Article 107805. https://doi.org/10.1016/j.buildenv.2021.107805

Flores-Abascal, I., Hernandez-Cruz, P., Odriozola-Maritorena, M., Almeida, M., Onety, B., Nicolle, J., Allard, F., Le Dreau, J., ARCAS-Consortium, & Suarez, E. (2023). A novel multicriteria methodology to assess the renovation of social buildings. Journal of Building Engineering, 77, Article 107505. https://doi.org/10.1016/j.jobe.2023.107505

Francis, A., & Thomas, A. (2023a). Sustainability assessment and benchmarking framework for buildings using a system dynamics modeling and simulation approach. Journal of Computing in Civil Engineering, 37(3), Article 04023005. https://doi.org/10.1061/JCCEE5.CPENG-5146

Francis, A., & Thomas, A. (2023b). System dynamics modelling coupled with multi-criteria decision-making (MCDM) for sustainability-related policy analysis and decision-making in the built environment. Smart and Sustainable Built Environment, 12(3), 534–564. https://doi.org/10.1108/SASBE-09-2021-0156

Gambatese, J. A., Pocock, J. B., & Duston, P. S. (Eds.). (2007). Constructability concepts and practice. American Society of Civil Engineers (ASCE). https://doi.org/10.1061/9780784408957

Giannetti, B. F., Demétrio, J. C. C., Agostinho, F., Almeida, C. M. V. B., & Liu, G. (2018). Towards more sustainable social housing projects: Recognizing the importance of using local resources. Building and Environment, 127, 187–203. https://doi.org/10.1016/j.buildenv.2017.10.033

Goldani, N., & Ishizaka, A. (2024). A hybrid fuzzy multi-criteria group decision-making method and its application to healthcare waste treatment technology selection. Annals of Operations Research. https://doi.org/10.1007/s10479-024-06036-y

Golubchikov, O., & Badyina, A. (2012). Sustainable housing for sustainable cities: A policy framework for developing countries. UN-HABITAT.

Gou, S., Nik, V. M., Scartezzini, J. L., Zhao, Q., & Li, Z. (2018). Passive design optimization of newly-built residential buildings in Shanghai for improving indoor thermal comfort while reducing building energy demand. Energy and Buildings, 169, 484–506. https://doi.org/10.1016/j.enbuild.2017.09.095

Govindan, K., Madan Shankar, K., & Kannan, D. (2016). Sustainable material selection for construction industry – A hybrid multi criteria decision making approach. Renewable and Sustainable Energy Reviews, 55, 1274–1288. https://doi.org/10.1016/j.rser.2015.07.100

Guaygua, B., Sánchez-Garrido, A. J., & Yepes, V. (2023). A systematic review of seismic-resistant precast concrete buildings. Structures, 58, Article 105598. https://doi.org/10.1016/j.istruc.2023.105598

Hagag, A. M., Yousef, L. S., & Abdelmaguid, T. F. (2023). Multi-criteria decision-making for machine selection in manufacturing and construction: recent trends. Mathematics, 11(3), Article 631. https://doi.org/10.3390/math11030631

Hajkowicz, S., & Collins, K. (2007). A review of multiple criteria analysis for water resource planning and management. Water Resources Management, 21(9), 1553–1566. https://doi.org/10.1007/s11269-006-9112-5

Han, J., Ma, H., Wang, M., & Li, J. (2024). Construction and improvement strategies of an age-friendly evaluation system for public spaces in affordable housing communities: A case study of Shenzhen. Frontiers in Public Health, 12, Article 1399852. https://doi.org/10.3389/fpubh.2024.1399852

Hatefi, S. M., Ahmadi, H., & Tamošaitienė, J. (2025). Risk assessment in mass housing projects using the integrated method of Fuzzy Shannon Entropy and fuzzy EDAS. Sustainability, 17(2), Article 528. https://doi.org/10.3390/su17020528

Hill, R. C., & Bowen, P. A. (1997). Sustainable construction: Principles and a framework for attainment. Construction Management and Economics, 15(3), 223–239. https://doi.org/10.1080/014461997372971

Hosseini, S. M. A., de la Fuente, A., & Pons, O. (2016a). Multi-criteria decision-making method for assessing the sustainability of post-disaster temporary housing units technologies: A case study in Bam, 2003. Sustainable Cities and Society, 20, 38–51. https://doi.org/10.1016/j.scs.2015.09.012

Hosseini, S. M. A., de la Fuente, A., & Pons, O. (2016b). Multicriteria decision-making method for sustainable site location of post-disaster temporary housing in urban areas. Journal of Construction Engineering and Management, 142(9), Article 04016036. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001137

Hosseini, S. M. A., Yazdani, R., & de la Fuente, A. (2020). Multi-objective interior design optimization method based on sustainability concepts for post-disaster temporary housing units. Building and Environment, 173, Article 106742. https://doi.org/10.1016/j.buildenv.2020.106742

Hsueh, S.-L. (2012). A fuzzy utility-based multi-criteria model for evaluating households’ energy conservation performance: A Taiwanese case study. Energies, 5(8), 2818–2834. https://doi.org/10.3390/en5082818

Hu, S. K., & Tzeng, G. H. (2019). A hybrid multiple-attribute decision-making model with modified PROMETHEE for identifying optimal performance-improvement strategies for sustainable development of a better life. Social Indicators Research, 144(3), 1021–1053. https://doi.org/10.1007/s11205-018-2033-x

Huang, M., Wang, Z., Pan, X., Gong, B., Tu, M., & Liu, Z. (2022). Delimiting China’s urban growth boundaries under localized shared socioeconomic pathways and various urban expansion modes. Earth’s Future, 10(6), Article e2021EF002572. https://doi.org/10.1029/2021EF002572

Huh, Y.-K., Hwang, B.-G., & Lee, J.-S. (2012). Feasibility analysis model for developer-proposed housing projects in the republic of Korea. Journal of Civil Engineering and Management, 18(3), 345–355. https://doi.org/10.3846/13923730.2012.698911

Hyun, C., Cho, K., Hong, T., & Moon, H. (2008). Effect of delivery methods on design performance in multifamily housing projects. Journal of Construction Engineering and Management, 134(7), 468–482. https://doi.org/10.1061/(ASCE)0733-9364(2008)134:7(468)

Invidiata, A., Lavagna, M., & Ghisi, E. (2018). Selecting design strategies using multi-criteria decision making to improve the sustainability of buildings. Building and Environment, 139, 58–68. https://doi.org/10.1016/j.buildenv.2018.04.041

International Organization for Standardization. (2017). Buildings and constructed assets – Service life planning – Part 5: Life-cycle costing (ISO Standard No. 15686-5:2017). https://www.iso.org/standard/61148.html

Issa, U. H., Miky, Y. H., & Abdel-Malak, F. F. (2019). A decision support model for civil engineering projects based on multi-criteria and various data. Journal of Civil Engineering and Management, 25(2), 100–113. https://doi.org/10.3846/jcem.2019.7551

Jiang, W., Lu Qiu, W., Lin, S.-H., Lv, H., Zhao, X., & Cong, H. (2023). A new hybrid decision-making model for promoting sustainable social rental housing. Sustainability, 15(8), Article 6420. https://doi.org/10.3390/su15086420

John, G., Clements-Croome, D., & Jeronimidis, G. (2005). Sustainable building solutions: A review of lessons from the natural world. Building and Environment, 40(3), 319–328. https://doi.org/10.1016/j.buildenv.2004.05.011

Kabir, G., Sadiq, R., & Tesfamariam, S. (2014). A review of multi-criteria decision-making methods for infrastructure management. Structure and Infrastructure Engineering, 10(9), 1176–1210. https://doi.org/10.1080/15732479.2013.795978

Kaklauskas, A., Zavadskas, E. K., Naimaviciene, J., Krutinis, M., Plakys, V., & Venskus, D. (2010). Model for a complex analysis of intelligent built environment. Automation in Construction, 19(3), 326–340. https://doi.org/10.1016/j.autcon.2009.12.006

Kamali, M., Hewage, K., & Milani, A. S. (2018). Life cycle sustainability performance assessment framework for residential modular buildings: Aggregated sustainability indices. Building and Environment, 138, 21–41. https://doi.org/10.1016/j.buildenv.2018.04.019

Kang, N. N., Lee, T. K., Kim, J. T., & Kim, C. G. (2014). Residents’ and experts’ perspectives for evaluation of importance of Health Performance Indicators in social housings. Indoor and Built Environment, 23(1, SI), 150–160. https://doi.org/10.1177/1420326X14523156

Karamoozian, M., & Hong, Z. (2023). Using a decision-making tool to select the optimal industrial housing construction system in Tehran. Journal of Asian Architecture and Building Engineering, 22(4), 2189–2208. https://doi.org/10.1080/13467581.2022.2145205

Karji, A., Woldesenbet, A., Khanzadi, M., & Tafazzoli, M. (2019). Assessment of social sustainability indicators in mass housing construction: A case study of Mehr housing project. Sustainable Cities and Society, 50, Article 101697. https://doi.org/10.1016/j.scs.2019.101697

Keshavarz Ghorabaee, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2016). A new combinative distance-based assessment (CODAS) method for multi-criteria decision-making. Economic Computation and Economic Cybernetics Studies and Research, 50(3), 25–44.

Khadra, A., Hugosson, M., Akander, J., & Myhren, J. A. (2020). Development of a weight factor method for sustainability decisions in building renovation. Case study using Renobuild. Sustainability, 12(17), Article 7194. https://doi.org/10.3390/su12177194

Kifokeris, D., & Xenidis, Y. (2017). Constructability: Outline of past, present, and future research. Journal of Construction Engineering and Management, 143(8), Article 04017035. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001331

Klinger, M., & Susong, M. (2006). The construction project: phases, people, terms, paperwork, processes. American Bar Association.

Klumbyte, E., Bliudzius, R., Medineckiene, M., & Fokaides, P. A. (2021). An MCDM model for sustainable decision-making in municipal residential buildings facilities management. Sustainability, 13(5), Article 2820. https://doi.org/10.3390/su13052820

Kontu, K., Rinne, S., Olkkonen, V., & Lahdelma Risto and Salminen, P. (2015). Multicriteria evaluation of heating choices for a new sustainable residential area. Energy and Buildings, 93, 169–179. https://doi.org/10.1016/j.enbuild.2015.02.003

Kung, H. Y., Juan, Y. K., & Castro-Lacouture, D. (2025). Decision support model for evaluating circular economy strategies in private residential construction. Developments in the Built Environment, 21, Article 100602. https://doi.org/10.1016/j.dibe.2025.100602

Kutlu Gündoğdu, F., & Kahraman, C. (2020). A novel spherical fuzzy analytic hierarchy process and its renewable energy application. Soft Computing, 24(6), 4607–4621. https://doi.org/10.1007/s00500-019-04222-w

Lai, J. H. K., & Yik, F. W. H. (2011). An analytical method to evaluate facility management services for residential buildings. Building and Environment, 46(1), 165–175. https://doi.org/10.1016/j.buildenv.2010.07.012

Lazar, N., & Chithra, K. (2021). Prioritization of sustainability dimensions and categories for residential buildings of tropical climate: A multi-criteria decision-making approach. Journal of Building Engineering, 39, Article 102262. https://doi.org/10.1016/j.jobe.2021.102262

Lee, J. W., Cho, K., Hwang, T., Han, J. yeon, & Kim, T. (2018). Process for integrating constructability into the design phase in high-rise concrete buildings: focused on temporary work. International Journal of Concrete Structures and Materials, 12(1), Article 81. https://doi.org/10.1186/s40069-018-0317-9

Li, D., Chen, H., Hui, E. C. M., Yang, H., & Li, Q. (2014). A methodology for ex-post assessment of social impacts of an affordable housing project. Habitat International, 43, 32–40. https://doi.org/10.1016/j.habitatint.2014.01.009

Lim, J., Afla, M. N., & Oey, E. (2023). Does concrete modular system add value in residential buildings? - Case study and qualitative evaluation. International Journal of Structural Engineering, 13(2), 259–277. https://doi.org/10.1504/IJSTRUCTE.2023.130162

Lotfi, M., Gerami, M., & Karakouzian, M. (2024). Sustainable structural system selection using hybrid fuzzy multi-criteria decision model based on seismic performance. Buildings, 14(7), Article 2107. https://doi.org/10.3390/buildings14072107

Lozano, F., Jurado, J. C., Lozano-Galant, J. A., de la Fuente, A., & Turmo, J. (2023). Integration of BIM and Value Model for sustainability assessment for application in bridge projects. Automation in Construction, 152, Article 104935. https://doi.org/10.1016/J.AUTCON.2023.104935

Lu, K., Deng, X., Jiang, X., Cheng, B., & Tam, V. W. Y. (2023). A review on life cycle cost analysis of buildings based on Building Information Modeling. Journal of Civil Engineering and Management, 29(3), 268–288. https://doi.org/10.3846/jcem.2023.18473

Malakouti, M., Faizi, M., Hosseini, S.-B., & Norouzian-Maleki, S. (2019). Evaluation of flexibility components for improving housing quality using fuzzy TOPSIS method. Journal of Building Engineering, 22, 154–160. https://doi.org/10.1016/j.jobe.2018.11.019

Maliene, V., Dixon-Gough, R., & Malys, N. (2018). Dispersion of relative importance values contributes to the ranking uncertainty: Sensitivity analysis of multiple criteria decision-making methods. Applied Soft Computing Journal, 67, 286–298. https://doi.org/10.1016/j.asoc.2018.03.003

Mandala, R. S. K., & Nayaka, R. R. (2023). A state of art review on time, cost and sustainable benefits of modern construction techniques for affordable housing. Construction Innovation, 25(2), 363–380. https://doi.org/10.1108/CI-03-2022-0048

Marchetti, D., & Wanke, P. (2020). Efficiency of the rail sections in Brazilian railway system, using TOPSIS and a genetic algorithm to analyse optimized scenarios. Transportation Research Part E: Logistics and Transportation Review, 135, Article 101858. https://doi.org/10.1016/j.tre.2020.101858

Marzouk, M., & Al Daour, I. (2018). Planning labor evacuation for construction sites using BIM and agent-based simulation. Safety Science, 109, 174–185. https://doi.org/10.1016/j.ssci.2018.04.023

Marzouk, M., Azab, S., & Metawie, M. (2016). Framework for sustainable low-income housing projects using building information modeling. Journal of Environmental Informatics, 28(1), 25–38. https://doi.org/10.3808/jei.201600332

Matić, B., Marinković, M., Jovanović, S., Sremac, S., & Stević, Ž. (2022). Intelligent novel IMF D-SWARA—Rough MARCOS algorithm for selection construction machinery for sustainable construction of road infrastructure. Buildings, 12(7), Article 1059. https://doi.org/10.3390/buildings12071059

Mela, K., Tiainen, T., & Heinisuo, M. (2012). Comparative study of multiple criteria decision making methods for building design. Advanced Engineering Informatics, 26(4), 716–726. https://doi.org/10.1016/j.aei.2012.03.001

Michán, L., & Muñoz-Velasco, I. (2013). Cienciometría para ciencias médicas: definiciones, aplicaciones y perspectivas. Investigación En Educación Médica, 2(6), 100–106. https://doi.org/10.1016/s2007-5057(13)72694-2

Minhas, M. R., Potdar, V., & Sianaki, O. A. (2018). A decision support system for selecting sustainable materials in construction projects. In Proceedings of 32nd IEEE International Conference on Advanced Information Networking and Applications Workshops (WAINA) (pp. 721–726), Krakow, Poland. IEEE. https://doi.org/10.1109/WAINA.2018.00174

Motuziene, V., Rogoza, A., Lapinskiene, V., & Vilutiene, T. (2016). Construction solutions for energy efficient single-family house based on its life cycle multi-criteria analysis: a case study. Journal of Cleaner Production, 112(1), 532–541. https://doi.org/10.1016/j.jclepro.2015.08.103

Mulliner, E., Smallbone, K., & Maliene, V. (2013). An assessment of sustainable housing affordability using a multiple criteria decision making method. Omega, 41(2), 270–279. https://doi.org/10.1016/j.omega.2012.05.002

Mulliner, E., Malys, N., & Maliene, V. (2016). Comparative analysis of MCDM methods for the assessment of sustainable housing affordability. Omega, 59(B), 146–156. https://doi.org/10.1016/j.omega.2015.05.013

Nădăban, S., Dzitac, S., & Dzitac, I. (2016). Fuzzy TOPSIS: A general view. Procedia Computer Science, 91, 823–831. https://doi.org/10.1016/j.procs.2016.07.088

Nadkarni, R. R., & Puthuvayi, B. (2020). A comprehensive literature review of multi-criteria decision making methods in heritage buildings. Journal of Building Engineering, 32, Article 101814. https://doi.org/10.1016/j.jobe.2020.101814

Namaki, P., Vegesna, B. S., Bigdellou, S., Chen, R., & Chen, Q. (2024). An integrated Building information modeling and life-cycle assessment approach to facilitate design decisions on sustainable building projects in Canada. Sustainability, 16(11), Article 4718. https://doi.org/10.3390/su16114718

Nartkaya, E., & Dinçer, A. E. (2024). Preservation of 20th-century residential areas and a proposal for Karabük Yenişehir settlement. Buildings, 14(9), Article 2984. https://doi.org/10.3390/buildings14092984

Natividade-Jesus, E., Coutinho-Rodrigues, J., & Antunes, C. H. (2007). A multicriteria decision support system for housing evaluation. Decision Support Systems, 43(3), 779–790. https://doi.org/10.1016/j.dss.2006.03.014

Nikbakht, M. V., Gheibi, M., Montazeri, H., Khaksar, R. Y., Moezzi, R., & Vadiee, A. (2024). Identification and ranking of factors affecting the delay risk of high-rise construction projects using AHP and VIKOR methods. Infrastructures, 9(2), Article 24. https://doi.org/10.3390/infrastructures9020024

Ogrodnik, K. (2019). Article multi-criteria analysis of design solutions in architecture and engineering: Review of applications and a case study. Buildings, 9(12), Article 244. https://doi.org/10.3390/buildings9120244

Ordu, M., & Der, O. (2023). Polymeric materials selection for flexible pulsating heat pipe manufacturing using a comparative hybrid MCDM approach. Polymers, 15(13), Article 2933. https://doi.org/10.3390/polym15132933

Pamučar, D., Ecer, F., Cirovic, G., & Arlasheedi, M. A. (2020). Application of improved best worst method (BWM) in real-world problems. Mathematics, 8(8), Article 1342. https://doi.org/10.3390/math8081342

Pan, W., Dainty, A. R. J., & Gibb, A. G. F. (2012). Establishing and weighting decision criteria for building system selection in housing construction. Journal of Construction Engineering and Management, 138(11), 1239–1250. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000543

Podvezko, V. (2011). The comparative analysis of MCDA methods SAW and COPRAS. Inžinerinė ekonomika – Engineering Economics, 22(2), 134–146. https://doi.org/10.5755/j01.ee.22.2.310

Pons, O., & de la Fuente, A. (2013). Integrated sustainability assessment method applied to structural concrete columns. Construction and Building Materials, 49, 882–893. https://doi.org/10.1016/j.conbuildmat.2013.09.009

Quayle, M. (2006). Purchasing and supply chain management. IGI Global. https://doi.org/10.4018/978-1-59140-899-4

Raut, R. D., & Mahajan, V. C. (2015). A new strategic approach of fuzzy-quality function deployment and analytical hierarchy process in construction industry. International Journal of Logistics Systems and Management, 20(2), 260–290. https://doi.org/10.1504/IJLSM.2015.067296

Raut, R. D., Kamble, S. S., & Jha, M. K. (2016). An assessment of sustainable house using FST-QFD-AHP multi-criteria decision-making approach. International Journal of Procurement Management, 9(1), 86–122. https://doi.org/10.1504/IJPM.2016.073390

Rutten, M. E. j., Dorée, A. G., & Halman, J. I. m. (2009). Innovation and interorganizational cooperation: A synthesis of literature. Construction Innovation, 9(3), 285–297. https://doi.org/10.1108/14714170910973501

Saaty, T. L. (2016). The analytic hierarchy and analytic network processes for the measurement of intangible criteria and for decision-making. In S. Greco, M. Ehrgott, & J. Figueira (Eds.), Multiple criteria decision analysis. International series in operations research & management science (Vol. 233, pp. 363–419). Springer. https://doi.org/10.1007/978-1-4939-3094-4_10

Şahin, M. (2020). Hybrid multicriteria group decision-making method for offshore location selection under fuzzy environment. Arabian Journal for Science and Engineering, 45(8), 6887–6909. https://doi.org/10.1007/s13369-020-04534-2

Salas, J., & Yepes, V. (2018a). A discursive, many-objective approach for selecting more-evolved urban vulnerability assessment models. Journal of Cleaner Production, 176, 1231–1244. https://doi.org/10.1016/j.jclepro.2018.01.088

Salas, J., & Yepes, V. (2018b). Urban vulnerability assessment: Advances from the strategic planning outlook. Journal of Cleaner Production, 179, 544–558. https://doi.org/10.1016/j.jclepro.2018.01.088

Salim, A. M., & Dabous, S. A. (2025). Framework for evaluating the successful implementation of solar home systems in public housing projects in the United Arab Emirates. Energy Nexus, 17, Article 100347. https://doi.org/10.1016/j.nexus.2024.100347

Sánchez-Garrido, A. J., & Yepes, V. (2020). Multi-criteria assessment of alternative sustainable structures for a self-promoted, single-family home. Journal of Cleaner Production, 258, Article 120556. https://doi.org/10.1016/j.jclepro.2020.120556

Sánchez-Garrido, A. J., Navarro, I. J., & Yepes, V. (2021). Neutrosophic multi-criteria evaluation of sustainable alternatives for the structure of single-family homes. Environmental Impact Assessment Review, 89, Article 106572. https://doi.org/10.1016/j.eiar.2021.106572

Sánchez-Garrido, A. J., Navarro, I. J., & Yepes, V. (2022a). Evaluating the sustainability of soil improvement techniques in foundation substructures. Journal of Cleaner Production, 351, Article 131463. https://doi.org/10.1016/j.jclepro.2022.131463

Sánchez-Garrido, A. J., Navarro, I. J., & Yepes, V. (2022b). Multi-criteria decision-making applied to the sustainability of building structures based on modern methods of construction. Journal of Cleaner Production, 330, Article 129724. https://doi.org/10.1016/j.jclepro.2021.129724

Santos, P. A. S., Cortez, B., & Carvalho, M. T. M. (2024). Integrating GIS and BIM with MCDM for infrastructure planning: a comprehensive framework. Engineering, Construction and Architectural Management, 32(6), 4197–4226. https://doi.org/10.1108/ECAM-08-2023-0830

Sarvari, H., Mehrabi, A., Chan, D. W. M., & Cristofaro, M. (2021). Evaluating urban housing development patterns in developing countries: Case study of worn-out urban fabrics in Iran. Sustainable Cities and Society, 70, Article 102941. https://doi.org/10.1016/j.scs.2021.102941

Schniederjans, M. J., Hoffman, J. J., & Sirmans, G. S. (1995). Using goal programming and the analytic hierarchy process in house selection. The Journal of Real Estate Finance and Economics, 11(2), 167–176. https://doi.org/10.1007/BF01098660

Schramm, V. B., Cabral, L. P. B., & Schramm, F. (2020). Approaches for supporting sustainable supplier selection - A literature review. Journal of Cleaner Production, 273, Article 123089. https://doi.org/10.1016/j.jclepro.2020.123089

Seth, D., Nemani, V. S. R. K., Pokharel, S., & Al Sayed, A. Y. (2018). Impact of competitive conditions on supplier evaluation: a construction supply chain case study. Production Planning & Control, 29(3), 217–235. https://doi.org/10.1080/09537287.2017.1407971

Shahpari, M., Saradj, F. M., & Pishvaee Mir Saman and Piri, S. (2020). Assessing the productivity of prefabricated and in-situ construction systems using hybrid multi-criteria decision making method. Journal of Building Engineering, 27, Article 100979. https://doi.org/10.1016/j.jobe.2019.100979

Sharghi, A., Nourtaghani, A., Ramzanpour, M., & Bagherigorji, R. (2023). Low-income housing location based on affordable criteria using AHP model and GIS technique (Case study: Babolsar City). Environment Development and Sustainability, 24, Article 10337. https://doi.org/10.1007/s10668-023-04249-y

Si, J., Marjanovic-Halburd, L., Nasiri, F., & Bell, S. (2016). Assessment of building-integrated green technologies: A review and case study on applications of Multi-Criteria Decision Making (MCDM) method. Sustainable Cities and Society, 27, 106–115. https://doi.org/10.1016/j.scs.2016.06.013

Silva, A. S., Silva Almeida, L. S., & Ghisi, E. (2016). Decision-making process for improving thermal and energy performance of residential buildings: A case study of constructive systems in Brazil. Energy and Buildings, 128, 270–286. https://doi.org/10.1016/j.enbuild.2016.06.084

Sisto, R., Fernández-Portillo, L. A., Yazdani, M., Estepa-Mohedano, L., & Torkayesh, A. E. (2022). Strategic planning of rural areas: Integrating participatory backcasting and multiple criteria decision analysis tools. Socio-Economic Planning Sciences, 82(Part A), Article 101248. https://doi.org/10.1016/j.seps.2022.101248

Siva Bhaskar, A., & Khan, A. (2022). Comparative analysis of hybrid MCDM methods in material selection for dental applications. Expert Systems with Applications, 209, Article 118268. https://doi.org/10.1016/J.ESWA.2022.118268

Soni, A., Das, P. K., & Sarma, M. J. (2023). Comparative analysis of different multi-criteria decision-making techniques for materials selection of filler reinforced thermoplastic composite. International Journal of Materials and Product Technology, 66(3–4), 233–251. https://doi.org/10.1504/IJMPT.2023.130194

Staniunas, M., Medineckiene, M., Zavadskas, E. K., & Kalibatas, D. (2013). To modernize or not: Ecological-economical assessment of multi-dwelling houses modernization. Archives of Civil and Mechanical Engineering, 13(1), 88–98. https://doi.org/10.1016/j.acme.2012.11.003

Stojčić, M., Zavadskas, E. K., Pamučar, D., Stević, Ž., & Mardani, A. (2019). Application of MCDM methods in sustainability engineering: A literature review 2008-2018. Symmetry, 11(3), Article 350. https://doi.org/10.3390/sym11030350

Tan, T., Mills, G., Papadonikolaki, E., & Liu, Z. (2021). Combining multi-criteria decision making (MCDM) methods with building information modelling (BIM): A review. Automation in Construction, 121, Article 103451. https://doi.org/10.1016/j.autcon.2020.103451

Tarque, N., Salsavilca, J., Yacila, J., & Camata, G. (2019). Multi-criteria analysis of five reinforcement options for Peruvian confined masonry walls. Earthquakes and Structures, 17(2), 205–219.

Tupenaite, L., Kaklauskas, A., Lill, I., Geipele, I., Naimaviciene, J., Kanapeckiene, L., & Kauskale, L. (2018). Sustainability assessment of the new residential projects in the Baltic States: a multiple criteria approach. Sustainability, 10(5), Article 1387. https://doi.org/10.3390/su10051387

Turskis, Z., & Juodagalviene, B. (2016). A novel hybrid multi-criteria decision-making model to assess a stairs shape for dwelling houses. Journal of Civil Engineering and Management, 22(8), 1078–1087. https://doi.org/10.3846/13923730.2016.1259179

Usman, M., & Frey, G. (2022). Multi-objective techno-economic optimization of design parameters for residential buildings in different climate zones. Sustainability, 14(1), Article 65. https://doi.org/10.3390/su14010065

Villalba, P., Guaygua, B., & Yepes, V. (2025). Optimal seismic retrofit alternative for shear deficient RC beams: a multiple criteria decision-making approach. Applied Sciences, 15(5), Article 2424. https://doi.org/10.3390/app15052424

Vitorio Jr., P. C., Yepes, V., & Kripka, M. (2022). Comparison of Brazilian social interest housing projects considering sustainability. International Journal of Environmental Research and Public Health, 19(10), Article 6213. https://doi.org/10.3390/ijerph19106213

Wang, J. J., Jing, Y. Y., Zhang, C. F., & Zhao, J. H. (2009). Review on multi-criteria decision analysis aid in sustainable energy decision-making. Renewable and Sustainable Energy Reviews, 13(9), 2263–2278. https://doi.org/10.1016/j.rser.2009.06.021

Wang, K., Ying, Z., Goswami, S. S., Yin, Y., & Zhao, Y. (2023). Investigating the role of artificial intelligence technologies in the construction industry using a Delphi-ANP-TOPSIS hybrid MCDM concept under a fuzzy environment. Sustainability, 15(15), Article 11848. https://doi.org/10.3390/su151511848

Wen, Z., Liao, H., Zavadskas, E. K., Antuchevičienė, J., Zavadskas, K., & Antuchevičienė, J. (2021). Applications of fuzzy multiple criteria decision making methods in civil engineering: a state-of-the-art survey. Journal of Civil Engineering and Management, 27(6), 358–371. https://doi.org/10.3846/jcem.2021.15252

Wu, W. C., & Perng, Y. H. (2017). AHP-utility based model for evaluating the comfort of housing: a case study of Taiwan. Applied Ecology and Environmental Research, 15(2), 133–144. https://doi.org/10.15666/aeer/1502_133144

Wu, G., Duan, K., Zuo, J., Zhao, X., & Tang, D. (2017). Integrated sustainability assessment of public rental housing community based on a hybrid method of AHP-entropy weight and cloud model. Sustainability, 9(4), Article 603. https://doi.org/10.3390/su9040603

Wu, F., Zeng, Y., & Li, L. H. (2021). A resident-oriented approach to developing sustainable welfare housing community: a case study of Guangzhou, China. Journal of Housing and the Built Environment, 36(4), 1745–1761. https://doi.org/10.1007/s10901-021-09820-5

Wu, Z. Z., Yang, K., Wu, Z. Z., Xue, H., Li, S., & Antwi-Afari, M. F. (2024). Investigating the mechanism of developers’ willingness to adopt prefabricated housing using an integrated DEMATEL-SD framework. Engineering, Construction and Architectural Management, 31(6), 2392–2414. https://doi.org/10.1108/ECAM-05-2022-0422

Yang, W., Wu, Y., & Leyva-Lopez, J. C. (2019). A novel TOPSIS method based on improved grey relational analysis for multiattribute decision-making problem. Mathematical Problems in Engineering, 2019, Article 8761681. https://doi.org/10.1155/2019/8761681

Yazdani-Chamzini, A., & Yakhchali, S. H. (2012). Tunnel Boring Machine (TBM) selection using fuzzy multicriteria decision making methods. Tunnelling and Underground Space Technology, 30, 194–204. https://doi.org/10.1016/j.tust.2012.02.021

Ye, F., Chen, Y., Li, L., Li, Y., & Yin, Y. (2022). Multi-criteria decision-making models for smart city ranking: Evidence from the Pearl River Delta region, China. Cities, 128, Article 103793. https://doi.org/10.1016/j.cities.2022.103793

Zarghami, E., Azemati, H., Fatourehchi, D., & Karamloo, M. (2018). Customizing well-known sustainability assessment tools for Iranian residential buildings using Fuzzy Analytic Hierarchy Process. Building and Environment, 128, 107–128. https://doi.org/10.1016/j.buildenv.2017.11.032

Zavadskas, E. K., Kaklauskas, A., Turskis, Z., & Tamosaitiene, J. (2008). Selection of the effective dwelling house walls by applying attributes values determined at intervals. Journal of Civil Engineering and Management, 14(2), 85–93. https://doi.org/10.3846/1392-3730.2008.14.3

Zavadskas, E. K., Turskis, Z., & Vilutiene, T. (2010). Multiple criteria analysis of foundation instalment alternatives by applying Additive Ratio Assessment (ARAS) method. Archives of Civil and Mechanical Engineering, 10(3), 123–141. https://doi.org/10.1016/S1644-9665(12)60141-1

Zavadskas, E. K., Antucheviciene, J., Adeli, H., Turskis, Z., & Adeli, H. (2016). Hybrid multiple criteria decision making methods: A review of applications in engineering. Scientia Iranica, 23(1), 1–20. https://doi.org/10.24200/SCI.2016.2093

Zavadskas, E. K., Antucheviciene, J., Vilutiene, T., Adeli, H., Kazimieras Zavadskas, E., Antucheviciene, J., Vilutiene, T., & Adeli, H. (2017). Sustainable decision-making in civil engineering, construction and building technology. Sustainability, 10(1), Article 14. https://doi.org/10.3390/su10010014

Zavadskas, E. K., Vinogradova-Zinkevic, I., Juodagalviene, B., Lescauskiene, I., & Keizikas, A. (2024). Comparison of safety and sustainability of U-shaped internal staircase projects via a Combined MCDM approach CORST. Applied Sciences, 14(1), Article 158. https://doi.org/10.3390/app14010158

Zhang, R., Wang, Z., Tang, Y., & Zhang, Y. (2020). Collaborative innovation for sustainable construction: the case of an industrial construction project network. IEEE Access, 8, 41403–41417. https://doi.org/10.1109/ACCESS.2020.2976563

Zhang, F., Chan, A. P. C., Darko, A., & Li, D. (2021a). BIM-enabled multi-level assessment of age-friendliness of urban housing based on multiscale spatial framework: enlightenments of housing support for “aging-in-place”. Sustainable Cities and Society, 72, Article 103039. https://doi.org/10.1016/j.scs.2021.103039

Zhang, J., Yang, D., Li, Q., Lev, B., & Ma, Y. (2021b). Research on sustainable supplier selection based on the rough DEMATEL and FVIKOR methods. Sustainability, 13(1), Article 88. https://doi.org/10.3390/su13010088

Zhu, X., Meng, X., & Zhang, M. (2021). Application of multiple criteria decision making methods in construction: a systematic literature review. Journal of Civil Engineering and Management, 27(6), 372–403. https://doi.org/10.3846/jcem.2021.15260

Zolfaghari, S. M., Pons, O., & Nikolic, J. (2023). Sustainability assessment model for mass housing’s interior rehabilitation and its validation to Ekbatan, Iran. Journal of Building Engineering, 65, Article 105685. https://doi.org/10.1016/j.jobe.2022.105685

View article in other formats

CrossMark check

CrossMark logo

Published

2025-08-06

Issue

Section

Articles

How to Cite

Luque Castillo, X., & Yepes, V. (2025). Multi-Criteria Decision Methods in the evaluation of social housing projects. Journal of Civil Engineering and Management, 31(6), 608–630. https://doi.org/10.3846/jcem.2025.24425

Share