Autonomous modular construction strategy using robotized crane based on deep learning and reinforcement learning

    Yifei Xiao Info
    T. Y. Yang Info
    Xiao Pan Info
    Fan Xie Info
    Amir Ghahremani Baghmisheh Info
DOI: https://doi.org/10.3846/jcem.2025.24043

Abstract

Modular construction offers significant advantages including faster construction time, higher quality control and less environmental impact. To further enhance its advantages, advanced robotic construction technologies are being developed. This research develops an automated modular construction framework that incorporates the robotic kinematics, deep learning and deep reinforcement learning using a robotized crane. The proposed modular construction strategy utilizes YOLOv5-S for modular container identification and localization. An improved proximal policy optimization (PPO-I) is developed and implemented in this strategy for collision-free three-dimensional (3D) lifting path planning and modular container transportation. States and rewards of the PPO-I and robot kinematics design of a real mobile crane are developed. The feasibility of the proposed modular construction strategy is verified through four case studies in 3D virtual environments. More than 97% success rate is observed meaning that the proposed strategy can be implemented in the robotized crane to localize the modular container and transport it to the target position with collision avoidance. The results indicate the potential of the proposed robotic-assisted modular construction strategy in the field of automated construction.

Keywords:

modular construction, mobile crane, robotized crane, machine learning, deep learning, deep reinforcement learning, 3D path planning, collision avoidance

How to Cite

Xiao, Y., Yang, T. Y., Pan, X., Xie, F., & Ghahremani Baghmisheh, A. (2025). Autonomous modular construction strategy using robotized crane based on deep learning and reinforcement learning. Journal of Civil Engineering and Management, 31(8), 955–972. https://doi.org/10.3846/jcem.2025.24043

Share

Published in Issue
December 9, 2025
Abstract Views
21

References

AlBahnassi, H., & Hammad, A. (2012). Near real-time motion planning and simulation of cranes in construction: Framework and system architecture. Journal of Computing in Civil Engineering, 26(1), 54–63. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000123

Al-Hussein, M., Alkass, S., & Moselhi, O. (2005). Optimization algorithm for selection and on site location of mobile cranes. Journal of Construction Engineering and Management, 131(5), 579–590. https://doi.org/10.1061/(ASCE)0733-9364(2005)131:5(579)

Alipour, M., Harris, D. K., & Miller, G. R. (2019). Robust pixel-level crack detection using deep fully convolutional neural networks. Journal of Computing in Civil Engineering, 33(6), Article 04019040. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000854

Alkaissy, M., Arashpour, M., Golafshani, E. M., Hosseini, M. R., Khanmohammadi, S., Bai, Y., & Feng, H. (2023). Enhancing construction safety: Machine learning-based classification of injury types. Safety Science, 162, Article 106102. https://doi.org/10.1016/j.ssci.2023.106102

Andersson, J., Bodin, K., Lindmark, D., Servin, M., & Wallin, E. (2021, September). Reinforcement learning control of a forestry crane manipulator. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (pp. 2121–2126). IEEE. https://doi.org/10.1109/IROS51168.2021.9636219

Asadi, E., Li, B., & Chen, I. M. (2018). Pictobot: A cooperative painting robot for interior finishing of industrial developments. IEEE Robotics & Automation Magazine, 25(2), 82–94. https://doi.org/10.1109/MRA.2018.2816972

Asghari, V., Wang, Y., Biglari, A. J., Hsu, S. C., & Tang, P. (2022). Reinforcement learning in construction engineering and management: A review. Journal of Construction Engineering and Management, 148(11), Article 03122009. https://doi.org/10.1061/(ASCE)CO.1943-7862.0002386

Bi, J., Zong, L., Si, Q., Ding, Y., Lou, N., & Huang, Y. (2020). Field measurement and numerical analysis on wind-induced performance of modular structure with concrete cores. Engineering Structures, 220, Article 110969. https://doi.org/10.1016/j.engstruct.2020.110969

Chang, Y. C., Hung, W. H., & Kang, S. C. (2012). A fast path planning method for single and dual crane erections. Automation in Construction, 22, 468–480. https://doi.org/10.1016/j.autcon.2011.11.006

Chea, C. P., Bai, Y., & Zhou, Z. (2024). Design and development of robotic collaborative system for automated construction of reciprocal frame structures. Computer-Aided Civil and Infrastructure Engineering, 39(10), 1550–1569. https://doi.org/10.1111/mice.13145

Chen, Z., Popovski, M., & Ni, C. (2020). A novel floor-isolated re-centering system for prefabricated modular mass timber construction – Concept development and preliminary evaluation. Engineering Structures, 222, Article 111168. https://doi.org/10.1016/j.engstruct.2020.111168

Chen, S., Dong, J., Ha, P., Li, Y., & Labi, S. (2021). Graph neural network and reinforcement learning for multi‐agent cooperative control of connected autonomous vehicles. Computer‐Aided Civil and Infrastructure Engineering, 36(7), 838–857. https://doi.org/10.1111/mice.12702

Chua, Y. S., Liew, J. R., & Pang, S. D. (2020). Modelling of connections and lateral behavior of high-rise modular steel buildings. Journal of Constructional Steel Research, 166, Article 105901. https://doi.org/10.1016/j.jcsr.2019.105901

City of Toronto. (2019). HousingTO 2020–2030 action plan. https://www.toronto.ca/community-people/community-partners/affordable-housing-partners/housingto-2020-2030-action-plan/

COPMA Articulated Cranes. (2023). COPMA document. https://www.cps-group.com/downloads/copma/

Coumans, E., Bai, Y. P., & PyBullet, A. (2016). A Python module for physics simulation for games, robotics and machine learning.

Craig, J. J. (2005). Introduction to robotics: mechanics and control. Pearson Education.

Delgado, J. M. D., Oyedele, L., Ajayi, A., Akanbi, L., Akinade, O., Bilal, M., & Owolabi, H. (2019). Robotics and automated systems in construction: Understanding industry-specific challenges for adoption. Journal of Building Engineering, 26, Article 100868. https://doi.org/10.1016/j.jobe.2019.100868

Denavit, J., & Hartenberg, R. S. (1955). A kinematic notation for lower-pair mechanisms based on matrices. Journal of Applied Mechanics, 22(2), 215–221. https://doi.org/10.1115/1.4011045

Di Stefano, G., Romeo, G., Mazzini, A., Iarocci, A., Hadi, S., & Pelphrey, S. (2018). The Lusi drone: A multidisciplinary tool to access extreme environments. Marine and Petroleum Geology, 90, 26–37. https://doi.org/10.1016/j.marpetgeo.2017.07.006

Ekanayake, B., Ahmadian Fard Fini, A., Wong, J. K. W., & Smith, P. (2024). A deep learning-based approach to facilitate the as-built state recognition of indoor construction works. Construction Innovation, 24(4), 933–949. https://doi.org/10.1108/CI-05-2022-0121

Engstrom, L., Ilyas, A., Santurkar, S., Tsipras, D., Janoos, F., Rudolph, L., & Madry, A. (2020). Implementation matters in deep policy gradients: A case study on PPO and TRPO. In 2020 International Conference on Learning Representations.

Fang, W., Zhong, B., Zhao, N., Love, P. E., Luo, H., Xue, J., & Xu, S. (2019). A deep learning-based approach for mitigating falls from height with computer vision: Convolutional neural network. Advanced Engineering Informatics, 39, 170–177. https://doi.org/10.1016/j.aei.2018.12.005

Fu, Y., Bu, J., Lin, J., Liu, J., & Zhang, C. (2024). Selection and layout optimization of double tower cranes. Buildings, 14(6), Article 1705. https://doi.org/10.3390/buildings14061705

Gharbia, M., Chang-Richards, A., Lu, Y., Zhong, R. Y., & Li, H. (2020). Robotic technologies for on-site building construction: A systematic review. Journal of Building Engineering, 32, Article 101584. https://doi.org/10.1016/j.jobe.2020.101584

Jocher, G., Stoken, A., Borovec, J., NanoCode012, Chaurasia, A., TaoXie, Changyu, L., Abhiram V, Laughing, tkianai, yxNONG, Hogan, A., lorenzomammana, AlexWang1900, Hajek, J., Diaconu, L., Marc, Kwon, Y., oleg, wanghaoyang0106, Defretin, Y., Lohia, A., ml5ah, Milanko, B., Fineran, B., Khromov, D., Yiwei, D., Doug, Durgesh, & Ingham, F. (2021). ultralytics/yolov5: v5.0- YOLOv5-P6 1280 models, AWS, Supervise.ly and YouTube integrations. https://zenodo.org/records/4679653

Guo, H., Zhang, Z., Yu, R., Sun, Y., & Li, H. (2023). Action recognition based on 3D skeleton and LSTM for the monitoring of construction workers’ safety harness usage. Journal of Construction Engineering and Management, 149(4), Article 04023015. https://doi.org/10.1061/JCEMD4.COENG-12542

Hauser, K. (2021). Kris’ locomotion and manipulation planning toolbox - Klamp’t. https://github.com/krishauser/Klampt

Henze, G. P., & Schoenmann, J. (2003). Evaluation of reinforcement learning control for thermal energy storage systems. HVAC&R Research, 9(3), 259–275. https://doi.org/10.1080/10789669.2003.10391069

Heravi, M. Y., Jang, Y., Jeong, I., & Sarkar, S. (2024). Deep learning-based activity-aware 3D human motion trajectory prediction in construction. Expert Systems with Applications, 239, Article 122423. https://doi.org/10.1016/j.eswa.2023.122423

Hu, K., Chen, Z., Kang, H., & Tang, Y. (2024). 3D vision technologies for a self-developed structural external crack damage recognition robot. Automation in Construction, 159, Article 105262. https://doi.org/10.1016/j.autcon.2023.105262

Islam, M. S., Shaqib, S. M., Ramit, S. S., Khushbu, S. A., Sattar, M. A., & Noor, D. S. R. H. (2024). A deep learning approach to detect complete safety equipment for construction workers based on YOLOv7. arXiv preprint arXiv:2406.07707. https://doi.org/10.48550/arXiv.2406.07707

Kalfarisi, R., Wu, Z. Y., & Soh, K. (2020). Crack detection and segmentation using deep learning with 3D reality mesh model for quantitative assessment and integrated visualization. Journal of Computing in Civil Engineering, 34(3), Article 04020010. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000890

Lapan, M. (2018). Deep reinforcement learning hands-on: Apply modern RL methods, with deep Q-networks, value iteration, policy gradients, TRPO, AlphaGo Zero and more. Packt Publishing Ltd.

Lawson, M., Ogden, R., & Goodier, C. I. (2014). Design in modular construction (Vol. 476). CRC Press. https://doi.org/10.1201/b16607

Lee, D., & Kim, M. (2021). Autonomous construction hoist system based on deep reinforcement learning in high-rise building construction. Automation in Construction, 128, Article 103737. https://doi.org/10.1016/j.autcon.2021.103737

Leng, Y., Shi, X., Hiroatsu, F., Kalachev, A., & Wan, D. (2023). Automated construction for human–robot interaction in wooden buildings: Integrated robotic construction and digital design of iSMART wooden arches. Journal of Field Robotics, 40(4), 810–827. https://doi.org/10.1002/rob.22154

Leong, Z., Chen, R., Xu, Z., Lin, Y., & Hu, N. (2023). Robotic arm three-dimensional printing and modular construction of a meter-scale lattice façade structure. Engineering Structures, 290, Article 116368. https://doi.org/10.1016/j.engstruct.2023.116368

Liu, Z., Yang, T., Sun, N., & Fang, Y. (2019). An antiswing trajectory planning method with state constraints for 4-DOF tower cranes: design and experiments. IEEE Access, 7, 62142–62151. https://doi.org/10.1109/ACCESS.2019.2915999

Liu, Z., Sun, N., Wu, Y., Xin, X., & Fang, Y. (2021). Nonlinear sliding mode tracking control of underactuated tower cranes. International Journal of Control, Automation and Systems, 19, 1065–1077. https://doi.org/10.1007/s12555-020-0033-5

Ludwika, A. S., & Rifai, A. P. (2024). Deep learning for detection of proper utilization and adequacy of personal protective equipment in manufacturing teaching laboratories. Safety, 10(1), Article 26. https://doi.org/10.3390/safety10010026

Mekruksavanich, S., & Jitpattanakul, A. (2023). Automatic recognition of construction worker activities using deep learning approaches and wearable inertial sensors. Intelligent Automation & Soft Computing, 36(2), 2111–2128. https://doi.org/10.32604/iasc.2023.033542

MMYOLO Contributors. (2022). MMYOLO: OpenMMLab YOLO series toolbox and benchmark. https://github.com/open-mmlab/mmyolo

Mousaei, A., Taghaddos, H., Nekouvaght Tak, A., Behzadipour, S., & Hermann, U. (2021). Optimized mobile crane path planning in discretized polar space. Journal of Construction Engineering and Management, 147(5), Article 04021036. https://doi.org/10.1061/(ASCE)CO.1943-7862.0002033

Mu, G., Zhang, M., Wu, G., Li, Z., & Pan, L. (2023). Optimisation of overhead crane path based on RRT-A* fusion improvement algorithm. International Journal of Simulation and Process Modelling, 21(1), 63–74. https://doi.org/10.1504/IJSPM.2023.139808

Oladugba, A. O., Gheith, M., & Eltawil, A. (2023). A new solution approach for the twin yard crane scheduling problem in automated container terminals. Advanced Engineering Informatics, 57, Article 102015. https://doi.org/10.1016/j.aei.2023.102015

Olearczyk, J., Bouferguène, A., Al-Hussein, M., & Hermann, U. R. (2014). Automating motion trajectory of crane-lifted loads. Automation in Construction, 45, 178–186. https://doi.org/10.1016/j.autcon.2014.06.001

Ouyang, H., Tian, Z., Yu, L., & Zhang, G. (2020). Motion planning approach for payload swing reduction in tower cranes with double-pendulum effect. Journal of the Franklin Institute, 357(13), 8299–8320. https://doi.org/10.1016/j.jfranklin.2020.02.001

Pan, Y., & Zhang, L. (2020). BIM log mining: Learning and predicting design commands. Automation in Construction, 112, Article 103107. https://doi.org/10.1016/j.autcon.2020.103107

Pascanu, R., Mikolov, T., & Bengio, Y. (2013, May). On the difficulty of training recurrent neural networks. In International Conference on Machine Learning (pp. 1310–1318). PMLR.

Peel, H., Luo, S., Cohn, A. G., & Fuentes, R. (2018). Localisation of a mobile robot for bridge bearing inspection. Automation in Construction, 94, 244–256. https://doi.org/10.1016/j.autcon.2018.07.003

Petersen, K. H., Napp, N., Stuart-Smith, R., Rus, D., & Kovac, M. (2019). A review of collective robotic construction. Science Robotics, 4(28), Article eaau8479. https://doi.org/10.1126/scirobotics.aau8479

Qi, B., Razkenari, M., Costin, A., Kibert, C., & Fu, M. (2021). A systematic review of emerging technologies in industrialized construction. Journal of Building Engineering, 39, Article 102265. https://doi.org/10.1016/j.jobe.2021.102265

Research and Markets. (2021). Modular construction – global market trajectory & analytics. https://www.researchandmarkets.com/reports/4805338/modular-constructionglobal-market-trajectory

Rothemund, P., Kim, Y., Heisser, R. H., Zhao, X., Shepherd, R. F., & Keplinger, C. (2021). Shaping the future of robotics through materials innovation. Nature Materials, 20(12), 1582–1587. https://doi.org/10.1038/s41563-021-01158-1

Schulman, J., Moritz, P., Levine, S., Jordan, M., & Abbeel, P. (2015). High-dimensional continuous control using generalized advantage estimation. arXiv preprint arXiv:1506.02438. https://doi.org/10.48550/arXiv.1506.02438

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., & Klimov, O. (2017). Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347. https://doi.org/10.48550/arXiv.1707.06347

Shamshiri, A., Ryu, K. R., & Park, J. Y. (2024). Text mining and natural language processing in construction. Automation in Construction, 158, Article 105200. https://doi.org/10.1016/j.autcon.2023.105200

Sirimewan, D., Bazli, M., Raman, S., Mohandes, S. R., Kineber, A. F., & Arashpour, M. (2024). Deep learning-based models for environmental management: Recognizing construction, renovation, and demolition waste in-the-wild. Journal of Environmental Management, 351, Article 119908. https://doi.org/10.1016/j.jenvman.2023.119908

Smith, R. E. (2010). Prefab architecture: A guide to modular design and construction. John Wiley & Sons.

Štefanič, M., & Stankovski, V. (2018, December). A review of technologies and applications for smart construction. Proceedings of the Institution of Civil Engineers-Civil Engineering, 172(2), 83–87. https://doi.org/10.1680/jcien.17.00050

Tucker, G., Bhupatiraju, S., Gu, S., Turner, R., Ghahramani, Z., & Levine, S. (2018, July). The mirage of action-dependent baselines in reinforcement learning. In International Conference on Machine Learning (pp. 5015–5024). PMLR.

Yang, T. Y., Lepine-Lacroix, S., & Ghahremani Baghmisheh, A. (2022). Novel high-performance tall modular mass timber buildings. In 5th International Conference on Earthquake Engineering and Disaster Mitigation (5th ICEEDM), Yogyakarta, Indonesia.

Yao, L., Dong, Q., Jiang, J., & Ni, F. (2020). Deep reinforcement learning for long‐term pavement maintenance planning. Computer‐Aided Civil and Infrastructure Engineering, 35(11), 1230–1245. https://doi.org/10.1111/mice.12558

Yin, J., Li, J., Yang, A., & Cai, S. (2024). Optimization of service scheduling problem for overlapping tower cranes with cooperative coevolutionary genetic algorithm. Engineering, Construction and Architectural Management, 31(3), 1348–1369. https://doi.org/10.1108/ECAM-08-2022-0767

Yu, G., & Wang, S. (2024). Research on lifting path planning algorithms for intelligent cranes. Journal of Engineering Research and Reports, 26(7), 57–63. https://doi.org/10.9734/jerr/2024/v26i71193

Zhang, C., Wang, F., Zou, Y., Dimyadi, J., Guo, B. H., & Hou, L. (2023). Automated UAV image-to-BIM registration for building façade inspection using improved generalised Hough transform. Automation in Construction, 153, Article 104957. https://doi.org/10.1016/j.autcon.2023.104957

Zhou, Y., Zhang, E., Guo, H., Fang, Y., & Li, H. (2021). Lifting path planning of mobile cranes based on an improved RRT algorithm. Advanced Engineering Informatics, 50, Article 101376. https://doi.org/10.1016/j.aei.2021.101376

Zhu, A., Dai, T., Xu, G., Pauwels, P., De Vries, B., & Fang, M. (2023). Deep reinforcement learning for real-time assembly planning in robot-based prefabricated construction. IEEE Transactions on Automation Science and Engineering, 20(3), 1515–1526. https://doi.org/10.1109/TASE.2023.3236805

Zhu, A., Zhang, Z., & Pan, W. (2024). Developing a fast and accurate collision detection strategy for crane-lift path planning in high-rise modular integrated construction. Advanced Engineering Informatics, 61, Article 102509. https://doi.org/10.1016/j.aei.2024.102509

View article in other formats

CrossMark check

CrossMark logo

Published

2025-12-09

Issue

Section

Articles

How to Cite

Xiao, Y., Yang, T. Y., Pan, X., Xie, F., & Ghahremani Baghmisheh, A. (2025). Autonomous modular construction strategy using robotized crane based on deep learning and reinforcement learning. Journal of Civil Engineering and Management, 31(8), 955–972. https://doi.org/10.3846/jcem.2025.24043

Share