Exploring the use of in-house sodium silicate from agro-industrial by-products in pervious geopolymer concrete
DOI: https://doi.org/10.3846/jcem.2025.23785Abstract
The extraction of in-house sodium silicate (IHS) as an alternative to commercial silicate in geopolymer pervious concrete (GPC) is the focus of this research. The IHS was developed from rice husk ash (RHA) and treated palm oil fuel ash (TPOFA) using the hydrothermal method. Class F Fly Ash (FA) and Ground Granulated Blast Furnace Slag (GGBS) were used as precursors in a 70:30 ratio. Steel slag aggregate (SSA) was used to wholly replace the conventional aggregates. Palm kernel shell biochar (PKS-BC) at various weight percentages between 1 and 5% was used to replace coarse aggregates (CA). GPC specimens were prepared using 10 M sodium hydroxide (NaOH) and one of the SS: commercial SS, RHA-based IHS, and a ‘Hybrid SS’ (commercial SS: TPOFA-based IHS – 50:50). The findings revealed that due to the toughness, surface roughness, and shape of the SSA, the compressive strength of SSA-based GPC specimens produced higher strength compared to crushed granite aggregate (CGA)-based GPC. ‘Hybrid SS’ and RHA-based IHS yielded slightly higher compressive strengths in GPC specimens compared to commercial SS-based GPC specimens. This finding proved that the appropriate ratio of silica source with NaOH facilitates the development of SS in the development of GPC.
Keywords:
geopolymer pervious concrete, in-house sodium silicate, hydrothermal method, palm kernel shell biochar, UV spectrophotometerHow to Cite
Share
License
Copyright (c) 2025 The Author(s). Published by Vilnius Gediminas Technical University.
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
ACI Committee 522. (2023). Pervious concrete.
Ahmad, J., Kontoleon, K. J., Majdi, A., Naqash, M. T., Deifalla, A. F., Ben Kahla, N., Isleem, H. F., & Qaidi, S. M. A. (2022). A comprehensive review on the ground granulated blast furnace slag (GGBS) in concrete production. Sustainability, 14(14), Article 8783. https://doi.org/10.3390/su14148783
Ahmed, T., & Hoque, S. (2020). Study on pervious concrete pavement mix designs. IOP Conference Series: Earth and Environmental Science, 476(1), Article 012062. https://doi.org/10.1088/1755-1315/476/1/012062
Alnahhal, A. M., Alengaram, U. J., Yusoff, S., Darvish, P., Srinivas, K., & Sumesh, M. (2022). Engineering performance of sustainable geopolymer foamed and non-foamed concretes. Construction and Building Materials, 316, Article 125601. https://doi.org/10.1016/j.conbuildmat.2021.125601
Alnahhal, A. M., Johnson Alengaram, U., Shazril Idris Ibrahim, M., K. H. Radwan, M., & Ayough, P. (2023). Extraction of home brewed sodium silicate from palm oil fuel ash and its effect on alkali activated materials. Construction and Building Materials, 407, Article 133440. https://doi.org/10.1016/j.conbuildmat.2023.133440
Arun, A., & Chekravarty, D. (2022). Strength improvement techniques on pervious concrete. Materials Today: Proceedings, 52(Part 3), 1979–1985. https://doi.org/10.1016/j.matpr.2021.11.624
ASTM International. (1997). Standard test method for bulk density (“unit weight”) and voids in aggregate (ASTM C29/C29M-97).
ASTM International. (2019). Standard specification for coal ash and raw or calcined natural pozzolan for use in concrete (ASTM C618-19).
ASTM International. (2021). Standard test method for density and void content of hardened pervious concrete (ASTM C1754/C1754M-12).
ASTM International. (2023). Standard test method for infiltration rate of in place pervious concrete (ASTM C1701/C1701M-17a).
ASTM International. (2024). Standard test method for relative density (specific gravity) and absorption of coarse aggregate (ASTM C127-24).
Bran-Anleu, P., Caruso, F., Wangler, T., Pomjakushina, E., & Flatt, R. J. (2018). Standard and sample preparation for the micro XRF quantification of chlorides in hardened cement pastes. Microchemical Journal, 141, 382–387. https://doi.org/10.1016/j.microc.2018.05.040
British Standards Institution. (1990). Testing aggregates – Part 112: Methods for determination of aggregate impact value (AIV) (BSI 812-112:1990).
British Standards Institution. (2019). Testing hardened concrete – Compressive strength of test specimens (BS EN 12390-3:2019).
Cai, J., Liu, Z., Xu, G., Tian, Q., Shen, W., Li, B., & Chen, T. (2022). Mix design methods for pervious concrete based on the mesostructure: Progress, existing problems and recommendation for future improvement. Case Studies in Construction Materials, 17, Article e01253. https://doi.org/10.1016/j.cscm.2022.e01253
da Costa, F. B. P., Haselbach, L. M., & da Silva Filho, L. C. P. (2021). Pervious concrete for desired porosity: Influence of w/c ratio and a rheology-modifying admixture. Construction and Building Materials, 268, Article 121084. https://doi.org/10.1016/j.conbuildmat.2020.121084
Duxson, P., Provis, J. L., Lukey, G. C., Mallicoat, S. W., Kriven, W. M., & Van Deventer, J. S. (2005). Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 269(1–3), 47–58. https://doi.org/10.1016/j.colsurfa.2005.06.060
Fan, B., Zhang, C. X., Chi, J., Liang, Y., Bao, X. L., Cong, Y. Y., Yu, B., Li, X., & Li, G. Y. (2022). The molecular mechanism of retina light injury focusing on damage from short wavelength light. Oxidative Medicine and Cellular Longevity, 2022, Article 8482149. https://doi.org/10.1155/2022/8482149
Fanghui, H., Qiang, W., & Jingjing, F. (2015). The differences among the roles of ground fly ash in the paste, mortar and concrete. Construction and Building Materials, 93, 172–179. https://doi.org/10.1016/j.conbuildmat.2015.05.117
Georgiades, M., Shah, I. H., Steubing, B., Cheeseman, C., & Myers, R. J. (2023). Prospective life cycle assessment of European cement production. Resources, Conservation and Recycling, 194, Article 106998. https://doi.org/10.1016/j.resconrec.2023.106998
Gupta, S., Kua, H. W., & Pang, S. D. (2020). Effect of biochar on mechanical and permeability properties of concrete exposed to elevated temperature. Construction and Building Materials, 234, Article 117338. https://doi.org/10.1016/j.conbuildmat.2019.117338
Gupta, S., Kashani, A., Mahmood, A. H., & Han, T. (2021). Carbon sequestration in cementitious composites using biochar and fly ash – Effect on mechanical and durability properties. Construction and Building Materials, 291, Article 123363. https://doi.org/10.1016/J.CONBUILDMAT.2021.123363
Hadi, M. N. S., Al-Azzawi, M., & Yu, T. (2018). Effects of fly ash characteristics and alkaline activator components on compressive strength of fly ash-based geopolymer mortar. Construction and Building Materials, 175, 41–54. https://doi.org/10.1016/j.conbuildmat.2018.04.092
Jadhav, R., Vyas, K., Gollapudi, B., Prajjwal, & Anil, T. (2022). Reviewing the implementation of ‘Thirsty concrete’ in the urban areas. Materials Today: Proceedings, 64, 1000–1005. https://doi.org/10.1016/j.matpr.2022.05.085
Kaur, M., Singh, J., & Kaur, M. (2018). Microstructure and strength development of fly ash-based geopolymer mortar: Role of nano-metakaolin. Construction and Building Materials, 190, 672–679. https://doi.org/10.1016/j.conbuildmat.2018.09.157
Khan, K., Ullah, M. F., Shahzada, K., Amin, M. N., Bibi, T., Wahab, N., & Aljaafari, A. (2020). Effective use of micro-silica extracted from rice husk ash for the production of high-performance and sustainable cement mortar. Construction and Building Materials, 258, Article 119589. https://doi.org/10.1016/j.conbuildmat.2020.119589
Kong, R., Li, J., Orban, C., Sabuncu, M. R., Liu, H., Schaefer, A., Sun, N., Zuo, X. N., Holmes, A. J., Eickhoff, S. B., & Yeo, B. T. T. (2019). Spatial topography of individual-specific cortical networks predicts human cognition, personality, and emotion. Cerebral Cortex, 29(6), 2533–2551. https://doi.org/10.1093/cercor/bhy123
Lederle, R., Shepard, T., & De La Vega Meza, V. (2020). Comparison of methods for measuring infiltration rate of pervious concrete. Construction and Building Materials, 244, Article 118339. https://doi.org/10.1016/j.conbuildmat.2020.118339
Leng, L., Xiong, Q., Yang, L., Li, H., Zhou, Y., Zhang, W., Jiang, S., Li, H., & Huang, H. (2021). An overview on engineering the surface area and porosity of biochar. Science of the Total Environment, 763, Article 144204. https://doi.org/10.1016/j.scitotenv.2020.144204
Lingyu, T., Dongpo, H., Jianing, Z., & Hongguang, W. (2021). Durability of geopolymers and geopolymer concretes: A review. Reviews on Advanced Materials Science, 60(1), 1–14. https://doi.org/10.1515/rams-2021-0002
Liu, W., Feng, Q., Chen, W., & Deo, R. C. (2020). Stormwater runoff and pollution retention performances of permeable pavements and the effects of structural factors. Environmental Science and Pollution Research, 27(24), 30831–30843. https://doi.org/10.1007/s11356-020-09220-2
Liu, M., Dai, W., Jin, W., Li, M., Yang, X., Han, Y., & Huang, M. (2024). Mix proportion design and carbon emission assessment of high strength geopolymer concrete based on ternary solid waste. Scientific Reports, 14(1), Article 24989. https://doi.org/10.1038/s41598-024-76774-3
Lloyd, N. A., & Rangan, B. V. (2010). Geopoymer concrete: A review of development and opportunities. In C. Tam, K. Ong, S. Teng, & M. Zhang (Eds.), 35th Conference on Our World in Concrete & Structures: “The Challenge of Low Carbon Age” (pp. 307–314). CI-Premier Pte Ltd.
Luck, J. D., Workman, S. R., Higgins, S. F., & Coyne, M. S. (2006). Hydrologic properties of pervious concrete. Transactions of the ASABE, 49(6), 1807−1813. https://doi.org/10.13031/2013.22301
Mallick, R. B., Li, H., Harvey, J., Myers, R., Veeraragavan, A., & Reck, N. (2015). Pavement life-extending potential of geosynthetic-reinforced chip seal with high-reflectivity aggregates. Transportation Research Record: Journal of the Transportation Research Board, 2474, 19–29. https://doi.org/10.3141/2474-03
Matinfar, M., & Nychka, J. A. (2023). A review of sodium silicate solutions: Structure, gelation, and syneresis. In Advances in Colloid and Interface Science, 322, Article 103036. https://doi.org/10.1016/j.cis.2023.103036
Meskhi, B., Beskopylny, A. N., Stel’makh, S. A., Shcherban’, E. M., Mailyan, L. R., Shilov, A. A., El’shaeva, D., Shilova, K., Karalar, M., Aksoylu, C., & Özkılıç, Y. O. (2023). Analytical review of geopolymer concrete: Retrospective and current issues. Materials, 16(10), Article 3792. https://doi.org/10.3390/ma16103792
Millogo, Y., Traoré, K., Ouedraogo, R., Kaboré, K., Blanchart, P., & Thomassin, J. H. (2008). Geotechnical, mechanical, chemical and mineralogical characterization of a lateritic gravels of Sapouy (Burkina Faso) used in road construction. Construction and Building Materials, 22(2), 70–76. https://doi.org/10.1016/j.conbuildmat.2006.07.014
Mohajerani, A., Bakaric, J., & Jeffrey-Bailey, T. (2017). The urban heat island effect, its causes, and mitigation, with reference to the thermal properties of asphalt concrete. Journal of Environmental Management, 197, 522–538. https://doi.org/10.1016/j.jenvman.2017.03.095
Montes, F., Valavala, S., & Haselbach, L. M. (2005). A new test method for porosity measurements of portland cement pervious concrete. Journal of ASTM International, 2(1), 1–13. https://doi.org/10.1520/JAI12931
Nguyen, M. N. (2021). Potential use of silica-rich biochar for the formulation of adaptively controlled release fertilizers: A mini review. Journal of Cleaner Production, 307, Article 127188. https://doi.org/10.1016/j.jclepro.2021.127188
Nurruddin, M. F., Haruna, S., Mohammed, B. S., & Sha΄abanet, I. G. (2018). Methods of curing geopolymer concrete: A review. International Journal of Advanced and Applied Sciences, 5(1), 31–36. https://doi.org/10.21833/ijaas.2018.01.005
Obla, K. H. (2010). Pervious concrete-An overview. The Indian Concrete Journal, 9–18.
Olusola, K. O., Babafemi, A. J., Umoh, A. A., & Olawuyi, B. J. (2012). Effect of batching methods on the fresh and hardened properties of concrete. International Journal of Research and Review in Applied Sciences (IJRRAS), 13(3), 773–779.
Patankar, S. V., Ghugal, Y. M., & Jamkar, S. S. (2015). Mix design of fly ash based geopolymer concrete. In V. Matsagar (Ed.), Advances in structural engineering (pp. 1619–1634). Springer, New Delhi. https://doi.org/10.1007/978-81-322-2187-6_123
Poh, A. H., Jamaludin, M. F., Fadzallah, I. A., Nik Ibrahim, N. M. J., Yusof, F., Adikan, F. R. M., & Moghavvemi, M. (2019). Diffuse reflectance spectroscopic analysis of barium sulfate as a reflection standard within 173–2500 nm: From pure to sintered form. Journal of Near Infrared Spectroscopy, 27(6), 393–401. https://doi.org/10.1177/0967033519868241
Piccolo, F., Andreola, F., Barbieri, L., & Lancellotti, I. (2021). Synthesis and characterization of biochar-based geopolymer materials. Applied Sciences, 11(22), Article 10945. https://doi.org/10.3390/app112210945
Qin, Y., Pang, X., Tan, K., & Bao, T. (2021). Evaluation of pervious concrete performance with pulverized biochar as cement replacement. Cement and Concrete Composites, 119, Article 104022. https://doi.org/10.1016/j.cemconcomp.2021.104022
Sachet, W. H., & Salman, W. D. (2021). Geopolymer concrete, mortar, and paste: A review. IOP Conference Series: Materials Science and Engineering, 1076(1), Article 012108. https://doi.org/10.1088/1757-899x/1076/1/012108
Sanjuán, M. Á., Morales, Á., & Zaragoza, A. (2021). Effect of precast concrete pavement albedo on the climate change mitigation in Spain. Sustainability, 13(20), Article 11448. https://doi.org/10.3390/su132011448
Satriawan, A., Muhdarina, & Awaluddin, A. (2021). The utilization silica from oil fly ash as a raw material for paper filler. Journal of Physics: Conference Series, 2049, Article 012062. https://doi.org/10.1088/1742-6596/2049/1/012062
Sen, S., Roesler, J., & King, D. (2019). Albedo estimation of finite-sized concrete specimens. Journal of Testing and Evaluation, 47(2), 738–757. https://doi.org/10.1520/JTE20170059
Siddika, A., Mamun, M. A. Al, Alyousef, R., & Mohammadhosseini, H. (2021). State-of-the-art-review on rice husk ash: A supplementary cementitious material in concrete. Journal of King Saud University – Engineering Sciences, 33(5), 294–307. https://doi.org/10.1016/j.jksues.2020.10.006
Soundararajan, E. K., & Vaiyapuri, R. (2021). Geopolymer binder for pervious concrete. Gradjevinar, 73(3), 209–218. https://doi.org/10.14256/JCE.2440.2018
Srikanth, N., & Dakshina Murthy, N. R. (2021). Studies on infiltration rate of pervious concrete. In S. Chandrasekaran, S. Kumar, & S. Madhuri (Eds.), Lecture notes in civil engineering: Vol. 135. Recent advances in structural engineering (pp. 21–28). Springer, Singapore. https://doi.org/10.1007/978-981-33-6389-2_3
Suman, S., Panwar, D. S., & Gautam, S. (2017). Surface morphology properties of biochars obtained from different biomass waste. Energy Sources, Part A: Recovery, Utilization and Environmental Effects, 39(10), 1007–1012. https://doi.org/10.1080/15567036.2017.1283553
Suresh, D., & Nagaraju, K. (2015). Ground granulated blast slag (GGBS) in concrete – A review. IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE), 12(4), 76–82.
Sweeney, A., West, R. P., & O’Connor, C. (2011). Parameters affecting the albedo effect in concrete.
Tambichik, M. A., Samad, A. A. A., Mohamad, N., Ali, A. Z. M., Mydin, M. A. O., Bosro, M. Z. M., & Iman, M. A. (2018). Effect of combining Palm Oil Fuel Ash (POFA) and Rice Husk Ash (RHA) as pozzolan to the compressive strength of concrete. International Journal of Integrated Engineering, 10(8), 61–67. https://doi.org/10.30880/ijie.2018.10.08.004
Tan, T. H., Mo, K. H., Ling, T. C., & Lai, S. H. (2020). Current development of geopolymer as alternative adsorbent for heavy metal removal. Environmental Technology and Innovation, 18, Article 100684. https://doi.org/10.1016/j.eti.2020.100684
Tan, K., Qin, Y., & Wang, J. (2022). Evaluation of the properties and carbon sequestration potential of biochar-modified pervious concrete. Construction and Building Materials, 314, Article 125648. https://doi.org/10.1016/j.conbuildmat.2021.125648
Thomas, B. S., Yang, J., Bahurudeen, A., Chinnu, S. N., Abdalla, J. A., Hawileh, R. A., & Hamada, H. M. (2022). Geopolymer concrete incorporating recycled aggregates: A comprehensive review. Cleaner Materials, 3, Article 100056. https://doi.org/10.1016/j.clema.2022.100056
Todkar, B. S., Deorukhkar, O. A., & Deshmukh, S. M. (2016). Extraction of silica from rice husk. International Journal of Engineering Research, 12(3), 69–74.
Wahid, H. A., Ramli, M. A., Razak, M. I. A., & Zulkepli, M. I. S. (2018). Determination of zakat recipient to flood victims. International Journal of Academic Research in Business and Social Sciences, 7(12), 1289–1304. https://doi.org/10.6007/IJARBSS/v7-i12/3767
Wang, Z., Wang, H., Zhang, T., & Xu, C. (2017). Investigation on absorption performance between cement and emulsified asphalt with UV–Vis spectrophotometer. Construction and Building Materials, 136, 256–264. https://doi.org/10.1016/j.conbuildmat.2017.01.016
Wang, D., Shi, C., Farzadnia, N., Shi, Z., & Jia, H. (2018). A review on effects of limestone powder on the properties of concrete. Construction and Building Materials, 192, 153–166. https://doi.org/10.1016/j.conbuildmat.2018.10.119
Yadollahi, M. M., Benli, A., & Demirboʇa, R. (2015). The effects of silica modulus and aging on compressive strength of pumice-based geopolymer composites. Construction and Building Materials, 94, 767–774. https://doi.org/10.1016/j.conbuildmat.2015.07.052
Yang, X., Zhu, W., & Yang, Q. (2008). The viscosity properties of sodium silicate solutions. Journal of Solution Chemistry, 37, 73–83. https://doi.org/10.1007/s10953-007-9214-6
Yazdani, S., & Singh, A. (2013). New developments in structural engineering and construction. Research Publishing Services.
Zabihi-Samani, M., Mokhtari, S. P., & Raji, F. (2018). Effects of fly ash on mechanical properties of concrete. Journal of Applied Engineering Sciences, 8(2), 35–40. https://doi.org/10.2478/jaes-2018-0016
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2025 The Author(s). Published by Vilnius Gediminas Technical University.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.