Share:


Quality and reliability of IFC/BIM models for public educational facilities construction projects via clash detection

    Michał Juszczyk Affiliation
    ; Mantas Vaišnoras Affiliation
    ; Robertas Kontrimovičius Affiliation
    ; Tomáš Hanák Affiliation
    ; Hanna Łukaszewska Affiliation
    ; Leonas Ustinovichius Affiliation

Abstract

This study investigates the reliability of monodiscipline IFC/BIM models in public construction projects of educational facilities through advanced clash detection and quantitative analysis. Data were collected from BIM models of two kindergartens and a school in Vilnius, Lithuania, representing different design disciplines. A mixed-methods approach was employed to analyse the number, types, and geometric characteristics of detected clashes. The research introduces innovative metrics, such as the Relative Quality Coefficient (RQC), Relative Uncertainty Coefficient (RUC), and Modified Relative Quality Coefficient (MRQC), to assess model quality and reliability quantitatively. The findings reveal a direct relationship between model complexity, clash detection precision, and the number of identified clashes, underscoring the importance of enhanced quality control measures in IFC/BIM models for public procurement. The study concludes that the implementation of these novel metrics can enhance the reliability of IFC/BIM models, thereby optimizing the design and construction process.

Keyword : IFC/BIM monodiscipline models, quality and reliability, building information modelling, clash detection, educational facilities, industry foundation classes, public construction projects

How to Cite
Juszczyk, M., Vaišnoras M., Kontrimovičius, R., Hanák, T., Łukaszewska, H., & Ustinovichius, L. (2025). Quality and reliability of IFC/BIM models for public educational facilities construction projects via clash detection. Journal of Civil Engineering and Management, 31(1), 1–19. https://doi.org/10.3846/jcem.2025.23114
Published in Issue
Jan 20, 2025
Abstract Views
22
PDF Downloads
12
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Abd, A. M., & Khamees, A. S. (2017). As built case studies for BIM as conflicts detection and documentation tool. Cogent Engineering, 4(1), Article 1411865. https://doi.org/10.1080/23311916.2017.1411865

Akhmetzhanova, B., Nadeem, A., Hossain, M. A., & Kim, J. R. (2022). Clash detection using building information modeling (BIM) technology in the Republic of Kazakhstan. Buildings, 12(2), Article 102. https://doi.org/10.3390/buildings12020102

Akponeware, A. O., & Adamu, Z. A. (2017) Clash detection or clash avoidance? An investigation into coordination problems in 3D BIM. Buildings, 7(3), Article 75. https://doi.org/10.3390/buildings7030075

Andersson, L., Farrell, K., Moshkovich, O., & Cranbourne S. (2016) Implementing virtual design and construction using BIM. Current and future practices (1st ed.). Routledge. https://doi.org/10.4324/9781315657073

Azhar, S. (2011). Building information modelling (BIM): Trends, benefits, risks, and challenges for the AEC industry. Leadership and Management in Engineering, 11(3), 241–252. https://doi.org/10.1061/(asce)lm.1943-5630.0000127

Azhar, S., Khalfan, M., & Maqsood, T. (2012). Building information modeling (BIM): now and beyond. The Australasian Journal of Construction Economics and Building, 12(4), 15–28. https://doi.org/10.5130/AJCEB.v12i4.3032

Baldwin, M. (2019). The BIM-manager: A practical guide for BIM project management. Beuth Verlag GmbH.

Barnes, P., & Davies, N. (2014). BIM in principle and in practice. London: ICE Publishing. https://doi.org/10.1680/bimpp.58637

Chahrour, R., Hafeez, M. A., Ahmad, A. M., Sulieman, H. I., Dawood, H., Rodriguez-Trejo, S., Kassem, M., Naji, K.K., & Dawood, N. (2021). Cost-benefit analysis of BIM-enabled design clash detection and resolution. Construction Management and Economics, 39(1), 55–72. https://doi.org/10.1080/01446193.2020.1802768

Chidambaram, S. (2020). The application of clash-detection processes in building information modelling for rebars. Proceedings of the Institution of Civil Engineers-Smart Infrastructure and Construction, 172(2), 53–69. https://doi.org/10.1680/jsmic.20.00005

Choi, J., Sejin, L., & Inhan, K. (2020). Development of quality control requirements for improving the quality of architectural design based on BIM. Applied Sciences, 10(20), Article 7074. https://doi.org/10.3390/app10207074

Coraglia, U. M., Simeone, D., Cursi, S. Fioravanti, A., Wurzer, G., & D’Alessandro, D. (2017). A simulation model for logical and operative clash detection. In 35th International Conference on Education and Research in Computer Aided Architectural Design in Europe (eCAADe 2017) (pp. 519–526), Rome, Italy. https://doi.org/10.52842/conf.ecaade.2017.2.519

Czmoch, I., & Pękala, A. (2014). Traditional design versus BIM based design. Procedia Engineering, 91, 210–215. https://doi.org/10.1016/j.proeng.2014.12.048

Daszczyński, T., Ostapowski, M., & Szerner, A. (2022). Clash cost analysis in electrical installations based on BIM technologies. Energies, 15(5), Article 1679. https://doi.org/10.3390/en15051679

Donato, V., Lo Turco, M., & Bocconcino, M. M. (2017). BIM-QA/QC in the architectural design process. Architectural Engineering and Design Management, 14(3), 239–254. https://doi.org/10.1080/17452007.2017.1370995

Eastman, C. M., Eastman, C., Teicholz, P., Sacks, R., & Liston, K. (2011). BIM handbook: A guide to building information modeling for owners, managers, designers, engineers, and contractors. John Wiley & Sons.

Eldeep A. M., Farag M. A. M., & Abd El-hafez, L. M. (2022). Using BIM as a lean management tool in construction processes – A case study. Ain Shams Engineering Journal, 13(2), Article 101556. https://doi.org/10.1016/j.asej.2021.07.009

EUBIM Task Group. (2017). Handbook for the introduction of building information modelling by the European public sector. Strategic action for construction sector performance: driving value, innovation and growth.

European Construction Sector Observatory. (2019). Building information modelling in the EU construction sector. European Commision.

Farnsworth, C. B., Beveridge, S., Miller, K. R., & Christofferson, J. P. (2015). Application, advantages, and methods associated with using BIM in commercial construction. International Journal of Construction Education and Research, 11(3), 218–236. https://doi.org/10.1080/15578771.2013.865683

Gustavsson, T. K. (2018). Liminal roles in construction project practice: exploring change through the roles of partnering manager, building logistic specialist and BIM coordinator. Construction Management and Economics, 36(11), 599–610. https://doi.org/10.1080/01446193.2018.1464197

Ham, N., Moon, S., Kim, J. H., & Kim, J. J. (2018). Economic analysis of design errors in BIM-based high-rise construction projects: Case study of Haeundae L project. Journal of Construction Engineering and Management, 144(6), Article 05018006. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001498

Han, N., Yue, Z. F., & Lu, Y. F. (2012). Collision detection of building facility pipes and ducts based on BIM technology. Advanced Materials Research, 346, 312–317. https://doi.org/10.4028/www.scientific.net/AMR.346.312

Hasannejad, A., Sardrud, J. M., & Shirzadi Javid, A. A. (2023). BIM-based clash detection improvement automatically. International Journal of Construction Management, 23(14), 2431–2437. https://doi.org/10.1080/15623599.2022.2063014

Hjelseth, E. (2016). Classification of BIM-based model checking concepts. ITcon, 21, 354–370.

Hu, Y., & Castro-Lacouture, D. (2018). Clash relevance prediction in BIM-Based design coordination using Bayesian statistics. In Construction Research Congress 2018 (pp. 649–658). ASCE. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000810

Hu, Y., & Castro-Lacouture, D. (2019). Clash relevance prediction based on machine learning. Journal of Computing in Civil Engineering, 33(2), Article 04018060. https://doi.org/10.1061/(ASCE)CP.1943-5487.0000810

Hu, Y., & Castro-Lacouture, D. (2022). Intelligent clash detection in building information modeling. In W. Lu, & C. J. Anumba (Eds.), Research companion to building information modeling (pp. 230–247). Edward Elgar Publishing. https://doi.org/10.4337/9781839105524.00021

Hu, Y., Castro-Lacouture, D., & Eastman, C. M. (2019). Holistic clash detection improvement using a component dependent network in BIM projects. Automation in Construction, 105, Article 102832. https://doi.org/10.1016/j.autcon.2019.102832

International Organization for Standardization. (2018). Industry Foundation Classes (IFC) for data sharing in the construction and facility management industries (ISO Standard No. 16739-1:2018).

Jacobsson, M., & Merschbrock, C. (2018). BIM coordinators: a review. Engineering, Construction and Architectural Management, 25(8), 989–1008. https://doi.org/10.1108/ECAM-03-2017-0050

Jiao, Y., & Cao, P. (2023) Research on optimization of project design management process based on BIM. Buildings, 13(9), Article 2139. https://doi.org/10.3390/buildings13092139

Johansson, P., Linderoth, H., & Granath, K. (2014). The role of BIM in preventing design errors. In 30th Annual Association of Researchers in Construction Management Conference (ARCOM) (pp. 703–712). Portsmouth, UK.

Jowett, B. R., Al Hattab, M., & Kassem, M. (2018). Demystifying collaboration in BIM-based projects under design-build procurement: Clash detection as a use value. In B. Kumar (Ed.), Contemporary strategies and approaches in 3-D information modeling (pp. 158–190). IGI Global. https://doi.org/10.4018/978-1-5225-5625-1.ch007

Kasznia, D., Magiera, J., & Wierzowiecki, P. (2018). BIM w praktyce: standardy, wdrożenie, case study. Wydawnictwo Naukowe PWN.

Kermanshahi, E. K., Tahir, M. B. M., Lim, N. H. A. S., Balasbaneh, A. T., & Roshanghalb, S. (2020). Implementation of building information modeling for construction clash detection process in the design stage: a case study of Malaysian police headquarter building. IOP Conference Series: Earth and Environmental Science, 476(1), Article 012009. https://doi.org/10.1088/1755-1315/476/1/012009

Khosakitchalert, C., Yabuki, N., & Fukuda, T. (2019). Improving the accuracy of BIM-based quantity takeoff for compound elements. Automation in Construction, 106, Article 102891. https://doi.org/10.1016/j.autcon.2019.102891

Kim, H., & Grobler, F. (2009). Design coordination in building information modeling (BIM) using ontological consistency checking. In Computing in Civil Engineering (2009) (pp. 410–420). ASCE. https://doi.org/10.1061/41052(346)41

Kjartansdóttir, I. B., Mordue, S., Nowak, P., Philp, D., & Snæbjörnsson, J. T. (2017). Building information modelling-BIM. Civil Engineering Faculty of Warsaw University of Technology.

Koo, H. J., & O’Connor, J. T. (2022). A strategy for building design quality improvement through BIM capability analysis. Journal of Construction Engineering and Management, 148(8), Article 04022066. https://doi.org/10.1061/(ASCE)CO.1943-7862.0002318

Kovacs, A. T., & Micsik, A. (2021). BIM quality control based on requirement linked data. International Journal of Architectural Computing, 19(3), 431–448. https://doi.org/10.1177/14780771211012175

Leite, F., Akinci, B., & Garrett Jr, J. (2009). Identification of data items needed for automatic clash detection in MEP design coordination. In Construction Research Congress 2009: Building a Sustainable Future (pp. 416–425). ASCE. https://doi.org/10.1061/41020(339)43

Lietuvos Respublikos Vyriausybė. (2021). Lietuvos Respublikos Vyriausybės nutarimas dėl statinio informacinio modeliavimo metodų taikymo atvejų nustatymo, 2021 m. gruodžio 8 d. Nr. 1061 [Resolution of the Government of the Republic of Lithuania on the determination of cases of application of static information modeling methods, 2021 December 8 No. 1061].Vilnius (in Lithuanian).

Lietuvos Respublikos aplinkos ministras. (2022). Įsakymas dėl užsakovo informacijos reikalavimų patvirtinimo, 2022 m. vasario 24 d. Nr. D1-57 [Minister of the Environment of the Republic of Lithuania, Declaration on the approval of customer information requirements, 2022 February 24 No. D1-57]. Vilnius (in Lithuanian).

Lin, W. Y., & Huang, Y. H. (2019). Filtering of irrelevant clashes detected by BIM software using a hybrid method of rule-based reasoning and supervised machine learning. Applied Sciences, 9(24), Article 5324. https://doi.org/10.3390/app9245324

Luo, S., Yao, J., Wang, S., Wang, Y., & Lu, G. (2022). A sustainable BIM-based multidisciplinary framework for underground pipeline clash detection and analysis. Journal of Cleaner Production, 374, Article 133900. https://doi.org/10.1016/j.jclepro.2022.133900

Malsane, S., Merin, M. J., Gokul, G. J., Nithin Dev, P., & Babu, S. T. (2022). Management of high-volume clashes during clash detection. In P. Srivastava, S. S. Thakur, G. I. Oros, A. A. AlJarrah, & V. Laohakosol (Eds.), Lecture notes in networks and systems: Vol. 214. Mathematical, computational intelligence and engineering approaches for tourism, agriculture and healthcare (pp. 285–295). Springer, Singapore. https://doi.org/10.1007/978-981-16-3807-7_23

Mehrbod, S., Staub-French, S., Mahyar, N., & Tory, M. (2019a). Beyond the clash: Investigating BIM-based building design coordination issue representation and resolution. ITcon, 24, 33–57.

Mehrbod S., Staub-French S., Mahya N., & Tory M. (2019b). Characterizing interactions with BIM tools and artifacts in building design coordination meetings. Automation in Construction, 98, 195–213. https://doi.org/10.1016/j.autcon.2018.10.025

Mehrbod S., Staub-French S., & Tory, M. (2020). BIM-based building design coordination: processes, bottlenecks, and considerations. Canadian Journal of Civil Engineering, 47(1), 25–36. https://doi.org/10.1139/cjce-2018-0287

Nguyen, Q. T., Luu, P. Q., & Ngo, Y. V. (2020). Application of BIM in design conflict detection: a case study of Vietnam. IOP Conference Series: Materials Science and Engineering, 869(2), Article 022038. https://doi.org/10.1088/1757-899X/869/2/022038

Paik, S., Leviakangas, P., & Choi, J. (2022). Making most of BIM in design: analysis of the importance of design coordination. International Journal of Construction Management, 22(12), 2225–2233. https://doi.org/10.1080/15623599.2020.1774837

Patacas, J., Dawood, N., & Kassem, M. (2020). BIM for facilities management: A framework and a common data environment using open standards. Automation in Construction, 120, Article 103366. https://doi.org/10.1016/j.autcon.2020.103366

Pärn, E. A., Edwards, D. J., & Sing, M. C. P. (2018). Origins and probabilities of MEP and structural design clashes within a federated BIM model. Automation in Construction, 85, 209–219. https://doi.org/10.1016/j.autcon.2017.09.010

Raut, S. P., & Valunjkar, S. S. (2017). Improve the productivity of building construction project using clash detection application in building information modeling. International Research Journal of Engineering and Technology, 4(3), 1784–1790.

Rowlinson, S., Collins, R., Tuuli, M. M., & Jia, Y. (2010). Implementation of Building Information Modeling (BIM) in construction: A comparative case study. AIP Conference Proceedings, 1233(1), 572–577. https://doi.org/10.1063/1.3452236

Sadek, K., El-Bastawissi, I., Raslan, R., & Sayary, S. (2019). Impact of BIM on building design quality. BAU Journal - Creative Sustainable Development, 1(1), Article 1. https://doi.org/10.54729/2789-8334.1000

Sampaio, A. Z., Gomes, N. R., Gomes, A. M., & Sanchez-Lite, A. (2022). Multi-project in an integrated BIM model: Clash detection and construction planning. Journal of Software Engineering and Applications, 15(10), 345–358. https://doi.org/10.4236/jsea.2022.1510020

Savitri, D. M., & Pramudya, A. A. (2020). Clash detection analysis with BIM-based software on midrise building construction project. IOP Conference Series: Earth and Environmental Science, 426(1), Article 012002. https://doi.org/10.1088/1755-1315/426/1/012002

Seo, J. H., Lee, B. R., Kim, J. H., & Kim, J. J. (2012). Collaborative process to facilitate BIM-based clash detection tasks for enhancing constructability. Journal of the Korea Institute of Building Construction, 12(3), 299–314. https://doi.org/10.5345/JKIBC.2012.12.3.299

Tomana, A. (2016). BIM Innowacyjna technologia w budownictwie. Podstawy, standardy, narzędzia. PWB MEDIA Ździebłowski Spółka Jawna.

Tommelein, I. D., & Gholami, S. (2012). Root causes of clashes in building information models. In Proceedings for the 20th Annual Conference of the International Group for Lean Construction, San Diego, USA.

Trebbi, C., Cianciulli, M., Matarazzo, F., Mirarchi, C., Cianciulli, G., & Pavan, A. (2020). Clash detection and code checking BIM platform for the Italian market. In B. Daniotti, M. Gianinetto, & S. Della Torre (Eds.), Digital transformation of the design, construction and management processes of the built environment (pp. 115–125). Springer, Cham. https://doi.org/10.1007/978-3-030-33570-0_11

van den Helm, P., Böhms, M., & van Berlo, L. (2019). IFC-based clash detection for the open-source BIMserver. In Proceedings of the 17th International Workshop on Intelligent Computing in Engineering, Berlin, Germany.

Wong, J. K., Zhou, J. X., & Chan, A. P. C. (2018). Exploring the linkages between the adoption of BIM and design error reduction. International Journal of Sustainable Development and Planning, 13(1), 108–120. https://doi.org/10.2495/SDP-V13-N1-108-120