Research on investment risk influence factors of prefabricated building projects

    Xiao-Juan Li   Affiliation


Prefabricated construction is an effective and efficient approach to improve construction processes, productivity, quality, and cost-effectiveness. There are, however, practical problems in this approach, including higher risk levels, and cost and time overruns. This study aims to develop a systematic approach for determining the key factors that affect investment risk of prefabricated building projects and assess this risk. Based on literature review, a structured questionnaire was distributed to 210 China-based construction organizations. Relevant evaluation index weights were obtained via questionnaire, and the application of structural equation modelling led to quantitative evaluation of investment risk in the prefabricated construction industry. The results show that the following systems have the most influence on investment risk (from high to low): economy, technology, market, management, and policy, and that the investment risk of such projects can be assessed using structural equation modelling. Relevant measures are presented to guide investment risk evaluation of projects. This study contributes to literature by considering investment risk influencing factors in this field. Further, the findings can help in understanding the implementation and investment risk control of prefabricated building projects, while providing valuable information to departments that make decisions on improving investment risk performance of such projects.

Keyword : prefabricated buildings, investment risk, risk evaluation, risk management, structural equation model (SEM), construction industry, China

How to Cite
Li, X.-J. (2020). Research on investment risk influence factors of prefabricated building projects. Journal of Civil Engineering and Management, 26(7), 599-613.
Published in Issue
Jul 3, 2020
Abstract Views
PDF Downloads
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Bollen, K. A. (1989). Structural equations with latent variables. John Wiley & Sons, Inc.

Burtonshaw-Gunn, S. A. (2017). Risk and financial management in construction. Gower Publishing, Ltd.

Cen, Y., & Liu, M. X. (2016). Evaluation and suggestion on economic policy of prefabricated building. Housing Industry, 9.

Chang, C., & Wu, X. (2019, February). Research on safety cost optimization model of prefabricated building. In Z. Xu, K.-K. Choo, A. Dehghantanha, R. Parizi, M. Hammoudeh (Eds.), Cyber Security Intelligence and Analytics (CSIA 2019). Advances in Intelligent Systems and Computing (Vol. 928, pp. 1268–1273). Springer, Cham.

Chang, Y., Li, X., Masanet, E., Zhang, L., Huang, Z., & Ries, R. (2018). Unlocking the green opportunity for prefabricated buildings and construction in China. Resources Conservation and Recycling, 139, 259–261.

Chen, Y., Du, X. J., & W. Y. (2017). Establishment and method of risk assessment system for prefabricated buildings. Value Engineering, 28, 16–19.

Cheng, Q. Z. (2017). Investment control of prefabricated building. Urbanism and Architecture, 5, 210–211.

Cho, K., Hong, T., & Hyun, C. (2009). Effect of project characteristics on project performance in construction projects based on structural equation model. Expert Systems with Applications, 36(7), 10461–10470.

Couto, J. P., Mendonca, P., & Reis, A. P. (2018). Prefabricated building systems: Evaluation of the construction practitioners’ perception on the environmental and economic benefits. Environmental Engineering and Management Journal, 17(9), 2103–2115.

Debrezion, G., Pels, E., & Rietveld, P. (2007). The impact of railway stations on residential and commercial property value: A meta-analysis. The Journal of Real Estate Finance and Economics, 35(2), 161–180.

Fischinger, M., Kramar, M., & Isaković, T. (2009). Seismic safety of prefabricated reinforced-concrete halls-analytical study. Građevinar, 61(11), 1039–1045.

Gang, X. W. (2016). Discussion on construction project management method in real estate development. China Venture Capital, 6, 94.

Haavelmo, T. (1943). The statistical implications of a system of simultaneous equations. Econometrica, 11(1), 1–12.

Hong, J., Shen, G. Q., Li, Z., Zhang, B., & Zhang, W. (2018). Barriers to promoting prefabricated building in China: A cost– benefit analysis. Journal of Cleaner Production, 172, 649–660.

Huang, Y. X., Zhu, L., Ye, Z. X., Wang, Y, Q., & Shi, Y. J. (2013). Summary of research on connection mode of precast concrete structure. Concrete, 1, 120–126.

Inozemtcev, A., & Duong, T. Q. (2019). Technical and economic efficiency of materials using 3D-printing in construction on the example of high-strength lightweight fiber-reinforced concrete. In XXII International Scientific Conference “Construction the Formation of Living Environment” (FORM-2019). Tashkent, Uzbekistan.

Iqbal, S., Choudhry, R. M., Holschemacher, K., Ali, A., & Tamošaitienė, J. (2015). Risk management in construction projects. Technological and Economic Development of Economy, 21(1), 65–78.

Kaliszewski, J. (2019). The project of building a concrete prefabrication plant using the innovative production technologies (Doctoral dissertation). Instytut Organizacji Systemów Produkcyjnych.

Kildsgaard, I., Jarnehammar, A., Widheden, A., & Wall, M. (2013). Energy and environmental performance of multistory apartment buildings built in timber construction using passive house principles. Buildings, 3(1), 258–277.

Kline, R. B. (2015). Principles and practice of structural equation modeling. Guilford Publications.

Lai, Z. M. (2018). Investment risk analysis of prefabricated building in China market. Housing and Real Estate, 493(8), 19.

Lau, S. Y., Chen, T., Zhang, J., Xue, X., Lau, S. K., & Khoo, Y. S. (2019, July). A new approach for the project process: prefabricated building technology integrated with photovoltaics based on the BIM system. In IOP Conference Series: Earth and Environmental Science (Vol. 294). Tokyo, Japan.

Li, Y. L. (2017). Investment cost analysis of assembled steel structure housing. Engineering Economy, 27(12), 9–12.

Li, Z., Shen, G. Q., & Xue, X. (2014). Critical review of the research on the management of prefabricated building. Habitat International, 43, 240–249.

Li, C. Z., Hong, J., Xue, F., Shen, G. Q., Xu, X., & Mok, M. K. (2016). Schedule risks in prefabrication housing production in Hong Kong: a social network analysis. Journal of Cleaner Production, 134, 482–494.

Li, C. Z., Shen, G. Q., Xu, X., Xue, F., Sommer, L., & Luo, L. (2017a). Schedule risk modeling in prefabrication housing production. Journal of Cleaner Production, 153, 692–706.

Li, M., Li, G., Huang, Y., & Deng, L. (2017b). Research on investment risk management of Chinese prefabricated construction projects based on a system dynamics model. Buildings, 7(3), 83.

Liu, Y. (2013). Financing risk management of construction investment projects. Urban Construction Theory Research, 16, 16–19.

Liu, K., Zhao, P., & Wang, H. (2017). Application of SEM based prefabricated concrete structure. Journal of Civil Engineering and Management, 34(1), 106–112.

Luo, L. (2019). Modelling risks in the supply chains of prefabricated building projects in Hong Kong (Doctoral dissertation). The Hong Kong Polytechnic University.

Luo, L. Z., Mao, C., Shen, L. Y., & Li, Z. D. (2015). Risk factors affecting practitioners’ attitudes toward the implementation of an industrialized building system. Engineering, Construction and Architectural Management, 22(6), 622–643.

Molenaar, K., Washington, S., & Diekmann, J. (2000). Structural equation model of construction contract dispute potential. Journal of Construction Engineering and Management, 126(4), 268–277.

Navaratnam, S., Ngo, T., Gunawardena, T., & Henderson, D. (2019). Performance review of prefabricated building systems and future research in Australia. Buildings, 9(2), 38.

Ng, A., & Loosemore, M. (2007). Risk allocation in the private provision of public infrastructure. International Journal of Project Management, 25(1), 66–76.

Nistico, N., Gkagka, E. E., & Gantes, C. J. (2015). Roof isolation with tuned mass-based systems and application to a prefabricated building. Arabian Journal for Science and Engineering, 40(2), 431–442.

Pearl, J. (2009). Causality. Cambridge University Press.

Pinto, A. (2014). QRAM a qualitative occupational safety risk assessment model for the construction industry that incorporate uncertainties by the use of fuzzy sets. Safety Science, 63, 57–76.

Pons, O., & Wadel, G. (2011). Environmental impacts of prefabricated school buildings in Catalonia. Habitat International, 35(4), 553–563.

Qi, B. K., & Zhu, Y. (2015). Research on risk assessment method of prefabricated building. Project Cost Management, 4, 30–33.

Research and Markets. (2018). Prefabricated volumetric buildings market report – UK 2014–2018.

Qi, B. K., Zhu, Y., & Fan, W.Y. (2016). Life cycle risk identification method for assembled building. Journal of Shenyang Construction University: Social Science Edition, 3, 7.

Rong, T. S. (2009). Amos and research methods. Chongqing University Press.

Rose, L. R. (2012). Risk management project for work with precast concrete shells. Work, 41(Supplement 1), 4157–4162.

Steinhardt, D. A., & Manley, K. (2016). Adoption of prefabricated housing – the role of country context. Sustainable Cities and Society, 22, 126–135.

Stroebele, B. S., Kiessling, A. J., & Zhang, J. (2017). Impact analysis of complexity drivers in the supply chain of prefabricated houses. Journal of Management and Strategy, 8(1), 1–9.

Tian, D., Li, X. W., & Ma, T. (2016). Design and analysis of assembled concrete building component system based on BIM. Building Structure, 17.

Tumminia, G., Guarino, F., Longo, S., Ferraro, M., Cellura, M., & Antonucci, V. (2018). Life cycle energy performances and environmental impacts of a prefabricated building module. Renewable and Sustainable Energy Reviews, 92, 272–283.

Wang, T., Gao, S., Li, X., & Ning, X. (2018). A meta-networkbased risk evaluation and control method for industrialized building construction projects. Journal of Cleaner Production, 205, 552–564.

Wang, Z. L., Shen, H. C., & Zuo, J. (2019). Risks in prefabricated buildings in China: importance-performance analysis approach. Sustainability, 11(12), 3450.

Wei, Z. B., Zhu, G. R., & Ma, N. (2005). Predict model for construction safety accident based on fuzzy judgment. China Occupational Safety and Health Management System Certification, 1(6), 55–57.

Wen, M. (2016). Application research on cost risk management of fabricated concrete residential building project (Master’s thesis). Hunan Agricultural University.

Wright, S. (1921). Correlation and causation. Journal of Agricultural Research, 20(7), 557–585.

Wu, G., Duan, K., Zuo, J., Zhao, X., & Tang, D. (2017). Integrated sustainability assessment of public rental housing community based on a hybrid method of AHP-Entropy weight and cloud model. Sustainability, 9(4), 603.

Xiong, J. S., Qin, H. T., Li, J. H., & Zhang, L. (2013). Method of determining index weight in security risk evaluation based on information entropy. Journal of Systems Science, 21(2), 82–84.

Ye, S., & Tiong, R. L. (2003). The effect of concession period design on completion risk management of BOT projects. Construction Management and Economics, 21(5), 471–482.

Zhang, J. R. (2014). Investment risk analysis of prefabricated building in Chinese market. Financial Circles, 7, 99.

Zhang, Z. Y., & Zheng, J. (2015). Analysis of the main points of prefabricated building design. Housing Industry, 9, 10–16.

Zhao, L., Liu, Z., Zhang, H., & Mbachu, J. (2019). Developing a BIM-based framework for supplier selection in prefabrication. Preprints, 2019030188.

Zheng, S. Q., Wang, D. F., Zuo, Q. L., & He, Q. (2016). Research on Influencing Factors of prefabricated building cost based on SEM. Project Management Technology, 14(11), 45–49.

Zhong, R. Y., Peng, Y., Xue, F., Fang, J., Zou, W., Luo, H., & Huang, G. Q. (2017). Prefabricated construction enabled by the Internet-of-Things. Automation in Construction, 76, 59–70.