Comparison of stochastic prediction models based on visual inspections of bridge decks
Abstract
Due to a considerable amount of information required to support the decision-making processes, an increasing number of infrastructure owners use computerized management systems. Bridges, being complex and having significant impact on society, have often been the foundation for the development of these systems. In order to manage bridges effectively, condition prediction models are incorporated to the core of decision-making processes. Many of developed and applied stochastic prediction models show certain limitations. The impact of these limitations on deterioration predictions cannot be objectively evaluated without direct comparison of prediction results. Hence, several stochastic prediction models based on condition ratings obtained from visual inspections of bridge decks are compared in this article. Models are described and implemented on the data of around 1100 reinforced concrete bridge decks from the ‘Infraestruturas de Portugal’, a state owned Portuguese general concessionaire for roadways and railways. The statistical analysis of different models revealed significant deviations, particularly in higher condition ratings. Results indicate limited prediction capability of a simple homogeneous Markov chain model when compared with time- and space-continuous models, such as the gamma process model.
Keywords:
stochastic prediction models, Markov process, gamma process, bridge management system, condition rating, visual inspectionHow to Cite
Share
License
Copyright (c) 2017 The Author(s). Published by Vilnius Gediminas Technical University.
This work is licensed under a Creative Commons Attribution 4.0 International License.
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2017 The Author(s). Published by Vilnius Gediminas Technical University.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.