Investment implications of Industry 4.0: evidence from smart manufacturing ETFs

DOI: https://doi.org/10.3846/jbem.2026.25512

Abstract

The rise of smart manufacturing, driven by digital transformation and Industry 4.0, has introduced new opportunities for investors seeking to diversify their portfolios. Smart manufacturing ETFs offer a unique risk-return profile tailored to the evolving landscape of industrial automation and data-driven processes. This paper explores the comparative risk-adjusted performance of a smart manufacturing ETF, a conventional industrial portfolio, and a broad-market SP500 tracking portfolio, utilizing daily data from October 2019 to October 2022. By deconstructing the excess returns of these portfolios through one-factor, three-factor, and five-factor asset pricing models, we provide insights into the risk exposure and performance drivers of smart manufacturing investments. Results indicate that investing in smart manufacturing, while less performant relative to the other investments, carries less exposure to market risk and can provide important diversification benefits to equity portfolios. Moreover, there is a positive loading for the size factor and a negative loading for the value and profitability factors for the smart manufacturing portfolio during a period of positive premium for all factors except for size. This implies that the consequent payoff in terms of profitability will eventually turn the loading of the profitability factor into positive territory, increasing returns on smart manufacturing investing.

Keywords:

smart manufacturing, pricing factors, factor models, portfolio investment, market risk, diversification

How to Cite

Tudor, C. D., Horobet, A., Dinca, Z., Belascu, L., & Sova, R. (2026). Investment implications of Industry 4.0: evidence from smart manufacturing ETFs. Journal of Business Economics and Management, 27(1), 74–93. https://doi.org/10.3846/jbem.2026.25512

Share

Published in Issue
February 10, 2026
Abstract Views
136

References

Amundi Asset Management. (2023). Amundi smart factory ucits ETF – EUR (Key information document). https://www.amundietf.nl/pdfDocuments/download/c3e1f18c-53bc-47ea-8df8-26e9e40e22f5/KIDPRIIPs_360621_69977_NLD_ENG_20230830.pdf

Arcidiacono, F., & Schupp, F. (2024). Investigating the impact of smart manufacturing on firms’ operational and financial performance. Journal of Manufacturing Technology Management, 35(3), 458–479. https://doi.org/10.1108/JMTM-05-2023-0190

Baele, L., & Londono, J. M. (2013). Understanding industry betas. Journal of Empirical Finance, 22, 30–51. https://doi.org/10.1016/j.jempfin.2013.02.003

Benaroch, M., & Kauffman, R. J. (1999). A case for using real options pricing analysis to evaluate information technology project investments. Information Systems Research, 10(1), 70–86. https://doi.org/10.1287/isre.10.1.70

Bianchi, D., Guidolin, M., & Ravazzolo, F. (2017). Macroeconomic factors strike back: A Bayesian change-point model of time-varying risk exposures and premia in the U.S. cross-section. Journal of Business & Economic Statistics, 35(1), 110–129. https://doi.org/10.1080/07350015.2015.1061436

Carhart, M. M. (1997). On persistence in mutual fund performance. The Journal of Finance, 52(1), 57–82. https://doi.org/10.1111/j.1540-6261.1997.tb03808.x

Contreras, I., Hidalgo, J. I., & Nuñez, L. (2017). Exploring the influence of industries and randomness in stock prices. Empirical Economics, 55, 713–729. https://doi.org/10.1007/s00181-017-1303-9

Dutt, P., & Mihov, I. (2008). Stock market comovements and industrial structure (INSEAD Working Paper No. 2008/53). SSRN. https://doi.org/10.2139/ssrn.1253269

Faff, R. (2004). A simple test of the Fama and French model using daily data: Australian evidence. Applied Financial Economics, 14(2), 83–92. https://doi.org/10.1080/0960310042000176353

Fama, E. F., & French, K. R. (1993). Common risk factors in the returns on stocks and bonds. Journal of Financial Economics, 33(1), 3–56. https://doi.org/10.1016/0304-405X(93)90023-5

Fama, E. F., & French, K. R. (1995). Size and book‐to‐market factors in earnings and returns. The Journal of Finance, 50(1), 131–155. https://doi.org/10.1111/j.1540-6261.1995.tb05169.x

Fama, E. F., & French, K. R. (2004). The capital asset pricing model: Theory and evidence. Journal of Economic Perspectives, 18(3), 25–46. https://doi.org/10.1257/0895330042162430

Fama, E. F., & French, K. R. (2015). A five-factor asset pricing model. Journal of Financial Economics, 116(1), 1–22. https://doi.org/10.1016/j.jfineco.2014.10.010

Fang, F., & Parida, S. (2022). Sustainable mutual fund performance and flow in the recent years through the COVID-19 pandemic. International Review of Financial Analysis, 84, Article 102387. https://doi.org/10.1016/j.irfa.2022.102387

Favre, L., & Galeano, J.-A. (2002). Mean-modified value-at-risk optimization with hedge funds. The Journal of Alternative Investments, 5(2), 21–25. https://doi.org/10.3905/jai.2002.319052

Foye, J. (2018). A comprehensive test of the Fama-French five-factor model in emerging markets. Emerging Markets Review, 37, 199–222. https://doi.org/10.1016/j.ememar.2018.09.002

Goel, S., Singh, J. K., Garg, G., & Chakravorty, S. L. (2024). Thematic funds – profitable investment alternative for smart investors in stock markets. International Education and Research Journal, 10(7), 105–108. https://doi.org/10.21276/IERJ24281667473301

Ghobakhloo, M. (2020). Industry 4.0, digitization, and opportunities for sustainability. Journal of Cleaner Production, 252, Article 119869. https://doi.org/10.1016/j.jclepro.2019.119869

Gutkevych, S. (2019). Investment attractiveness of industries: Features and trends. Baltic Journal of Economic Studies, 5(3), 50–58. https://doi.org/10.30525/2256-0742/2019-5-3-50-58

Huang, T.-L. (2019). Is the Fama and French five-factor model robust in the Chinese stock market?. Asia Pacific Management Review, 24(3), 278–289. https://doi.org/10.1016/j.apmrv.2018.10.002

Huisman, R., Pownall, R. A. J., & Koedijk, K. G. (1998). VaR-x: Fat tails in financial risk management. Journal of Risk, 1(1), 47–61. https://doi.org/10.21314/JOR.1998.003

Ingaldi, M., & Ulewicz, R. (2020). Problems with the implementation of Industry 4.0 in enterprises from the SME Sector. Sustainability, 12(1), Article 217. https://doi.org/10.3390/su12010217

Jang, S., Chung, Y., & Son, H. (2022). Are smart manufacturing systems beneficial for all SMEs? Evidence from Korea. Management Decision, 60(6), 1719–1743. https://doi.org/10.1108/MD-12-2020-1632

Joshi, G., & Dash, R. K. (2024). Exchange-traded funds and the future of passive investments: A bibliometric review and future research agenda. Future Business Journal, 10, Article 17. https://doi.org/10.1186/s43093-024-00306-8

Kagermann, H., Wahlster, W., & Helbig, J. (2013). Securing the future of German manufacturing industry: Recommendations for implementing the strategic initiative INDUSTRIE 4.0. (Final report of the Industrie 4.0 working group). Foschsungsunion and Acatech. Retrieved December 20, 2022, from https://www.din.de/resource/blob/76902/e8cac883f42bf28536e7e8165993f1fd/recommendations-for-implementing-industry-4-0-data.pdf

Kamble, S. S., Gunasekaran, A., & Gawankar, S. A. (2018). Sustainable Industry 4.0 framework: A systematic literature review identifying the current trends and future perspectives. Process Safety and Environmental Protection, 117, 408–425. https://doi.org/10.1016/j.psep.2018.05.009

Kang, H. S., Lee, J. Y., Choi, S. S., Kim, H., Park, J. H., Son, J. Y., Kim, B. H., & Noh, S. D. (2016). Smart manufacturing: Past research, present findings, and future directions. International Journal of Precision Engineering and Manufacturing-Green Technology, 3, 111–128. https://doi.org/10.1007/s40684-016-0015-5 https://doi.org/10.1007/s40684-016-0015-5

Kim, J., Jeong, H., & Park, H. (2023). Key drivers and performances of smart manufacturing adoption: A meta-analysis. Sustainability, 15(8), Article 6496. https://doi.org/10.3390/su15086496

Kusiak, A. (2019). Fundamentals of smart manufacturing: A multi-thread perspective. Annual Reviews in Control, 47, 214–220. https://doi.org/10.1016/j.arcontrol.2019.02.001

Lintner, J. (1965). The valuation of risk assets and the selection of risky investments in stock portfolios and capital budgets. The Review of Economics and Statistics, 47(1), 13–37. https://doi.org/10.2307/1924119

Liu, Y., Mauer, D. C., & Zhang, Y. (2018). The hedging benefits of industrial and global diversification: Evidence from economic downturns. Journal of Business Finance & Accounting, 45(9–10), 1322–1351. https://doi.org/10.1111/jbfa.12354

Lu, Y. (2017). Industry 4.0: A survey on technologies, applications and open research issues. Journal of Industrial Information Integration, 6, 1–10. https://doi.org/10.1016/j.jii.2017.04.005

Luft, C. F., & Plamondon, J. P. (2017). Exchange-traded funds: Sector performance and diversification. The Journal of Index Investing, 7(4), 51–59. https://doi.org/10.3905/jii.2017.7.4.051

Madykh, A. A., & Okhten, O. O. (2018). Modeling the transformation of the impact of production factors on the economy in the process of smart industry formation. Economy of Industry, 4(84), 26–41. https://doi.org/10.15407/econindustry2018.04.026

Mahmoodi, E., Fathi, M., Tavana, M., Ghobakhloo, M., & Ng, A. H. (2024). Data-driven simulation-based decision support system for resource allocation in industry 4.0 and smart manufacturing. Journal of Manufacturing Systems, 72, 287–307. https://doi.org/10.1016/j.jmsy.2023.11.019

Marín-Rodríguez, N. J., González-Ruíz, J. D., & Botero, S. (2025). Towards new strategies for investing: Insights on sustainable exchange-traded funds (ETFs). World, 6(1), Article 8. https://doi.org/10.3390/world6010008

Methling, F., & Von Nitzsch, R. (2018). Thematic portfolio optimization: Challenging the core satellite approach. SSRN. https://doi.org/10.2139/ssrn.3227775

Miralles-Quirós, J. L., Miralles-Quirós, M. M., & Nogueira, J. M. (2020). Sustainable development goals and investment strategies: The profitability of using five-factor Fama-French alphas. Sustainability, 12(5), Article 1842. https://doi.org/10.3390/su12051842

Moeuf, A., Pellerin, R., Lamouri, S., Tamayo-Giraldo, S., & Barbaray, R. (2018). The industrial management of SMEs in the era of Industry 4.0. International Journal of Production Research, 56(3), 1118–1136. https://doi.org/10.1080/00207543.2017.1372647

Morgan Stanley (2021). Sustainable funds outperformed peers in 2020 during coronavirus. Retrieved January 4, 2023, from https://www.morganstanley.com/ideas/esg-funds-outperform-peers-coronavirus

Namjoshi, J., & Rawat, M. (2022). Role of smart manufacturing in industry 4.0. Materials Today: Proceedings, 63, 475–478. https://doi.org/10.1016/j.matpr.2022.03.620

Papazoglou, M. P., & Andreou, A. S. (2019). Smart connected digital factories: Unleashing the power of Industry 4.0. In V. Muñoz, D. Ferguson, M. Helfert, & C. Pahl (Eds.), Communications in computer and information science: Vol. 1073. Cloud computing and services science. CLOSER 2018 (pp. 77–101). Springer. https://doi.org/10.1007/978-3-030-29193-8_5

Pavlović, D., Korenak, B., & Balaban, M. (2025). Navigating sector momentum: Evaluating performance in the US and global ETFs for retail investors. Economic Analysis, 58, 40–52. https://doi.org/10.28934/ea.1936

Peterson, B. G., Carl, P., Boudt, K., Bennett, R., Ulrich, J., Zivot, E., Cornilly, D., Hung, E., Lestel, M., Balkissoon, K., Wuertz, D., Martin, R. D., Zhou, Z. Z., Shea, J. M., & Jain, D. (2024). Performance analytics: Econometric tools for performance and risk analysis. https://cran.r-project.org/web/packages/PerformanceAnalytics/PerformanceAnalytics.pdf

Ren, S., Zhang, Y., Liu, Y., Sakao, T., Huisingh, D., & Almeida, C. M. V. B. (2019). A comprehensive review of big data analytics throughout product lifecycle to support sustainable smart manufacturing: A framework, challenges and future research directions. Journal of Cleaner Production, 210, 1343–1365. https://doi.org/10.1016/j.jclepro.2018.11.025

Ross, S. A. (1976). The arbitrage theory of capital asset pricing. Journal of Economic Theory, 13(3), 341–360. https://doi.org/10.1016/0022-0531(76)90046-6

Rüßmann, M., Lorenz, M., Gerbert, P., Waldner, M., Justus, J., Engel, P., & Harnisch, M. (2015). Industry 4.0: The future of productivity and growth in manufacturing industries. Boston Consulting Group. https://web-assets.bcg.com/img-src/Industry_40_Future_of_Productivity_April_2015_tcm9-61694.pdf

Sarwar, G., Mateus, C., & Todorovic, N. (2018). US sector rotation with five-factor Fama-French alphas. Journal of Asset Management, 19, 116–132. https://doi.org/10.1057/s41260-017-0067-2

Scherer, B., & Martin, R. D. (2005). Modern portfolio optimization with NuOPT™, S-PLUS®, and S+ Bayes™. Springer. https://doi.org/10.1007/978-0-387-27586-4

Sharpe, W. F. (1964). Capital asset prices: A theory of market equilibrium under conditions of risk. The Journal of Finance, 19(3), 425–442. https://doi.org/10.1111/j.1540-6261.1964.tb02865.x

Silva, F., & Cortez, M. C. (2016). The performance of US and European green funds in different market conditions. Journal of Cleaner Production, 135, 558–566. https://doi.org/10.1016/j.jclepro.2016.06.112

Solactive. (2025). Solactive Smart Factory Index TR (Factsheet). https://www.solactive.com/wp-content/uploads/solactiveip/en/Factsheet_DE000SLA7X09.pdf

Somohano-Rodríguez, F. M., & Madrid-Guijarro, A. (2022). Do industry 4.0 technologies improve Cantabrian manufacturing smes performance? The role played by industry competition. Technology in Society, 70, Article 102019. https://doi.org/10.1016/j.techsoc.2022.102019

Sortino, F. A., & Price, L. N. (1994). Performance measurement in a downside risk framework. Journal of Investing, 3(3), 59–64. https://doi.org/10.3905/joi.3.3.59

Szczygielski, J. J., Brümmer, L., & Wolmarans, H. P. (2020). An augmented macroeconomic linear factor model of South African industrial sector returns. The Journal of Risk Finance, 21(5), 517–541. https://doi.org/10.1108/JRF-09-2019-0186

Toroslu, A., Schemmann, B., Chappin, M. M. H., Castaldi, C., & Herrmann, A. M. (2023). Value capture in open innovation: A literature review and a research agenda. Industrial Marketing Management, 114, 297–312. https://doi.org/10.1016/j.indmarman.2023.08.012

Uryasev, S. P. (Ed.). (2000). Probabilistic constrained optimization: Methodology and applications. Vol. 49. Nonconvex Optimization and its aplications. Springer. https://doi.org/10.1007/978-1-4757-3150-7

Yu, L., Zhang, S., & Zhou, X. Y. (2006). A downside risk analysis based on financial index tracking models. In A. N. Shiryaev, M. R. Grossinho, P. E. Oliveira & M. L. Esquível (Eds.), Stochastic finance (pp. 213–236). Springer. https://doi.org/10.1007/0-387-28359-5_8

Yuan, C., Liu, W., Zhou, G., Shi, X., Long, S., Chen, Z., & Yan, X. (2022). Supply chain innovation announcements and shareholder value under industries 4.0 and 5.0: Evidence from China. Industrial Management & Data Systems, 122(8), 1909–1937. https://doi.org/10.1108/IMDS-12-2021-0802

Zhong, R. Y., Xu, X., Klotz, E., & Newman, S. T. (2017). Intelligent manufacturing in the context of Industry 4.0: A review. Engineering, 3(5), 616–630. https://doi.org/10.1016/J.ENG.2017.05.015

View article in other formats

CrossMark check

CrossMark logo

Published

2026-02-10

Issue

Section

Articles

How to Cite

Tudor, C. D., Horobet, A., Dinca, Z., Belascu, L., & Sova, R. (2026). Investment implications of Industry 4.0: evidence from smart manufacturing ETFs. Journal of Business Economics and Management, 27(1), 74–93. https://doi.org/10.3846/jbem.2026.25512

Share