Artificial intelligence in business and economics research: trends and future


Artificial Intelligence is a disruptive technology developed during the 20th century, which has undergone an accelerated evolution, underpinning solutions to complex problems in the business world. Neural Networks, Machine Learning, or Deep Learning are concepts currently associated with terms such as digital marketing, decision making, industry 4.0 and business digital transformation.  Interest in this technology will increase as the competitive advantages of the use of Artificial Intelligence by economic entities is realised. The aim of this research is to analyse the state-of-the-art research of Artificial Intelligence in business. To this end, a bibliometric analysis has been implement using the Web of Science and Scopus online databases. By using a fractional counting method, this paper identifies 11 clusters and the most frequent terms used in Artificial Intelligence research. The present study identifies the main trends in research on Artificial Intelligence in business and proposes future lines of inquiry.

First published online 29 October 2020

Keyword : artificial intelligence, business, economics, bibliometrics, research trends, decision-making

How to Cite
Ruiz-Real, J. L., Uribe-Toril, J., Torres, J. A., & De Pablo, J. (2021). Artificial intelligence in business and economics research: trends and future. Journal of Business Economics and Management, 22(1), 98-117.
Published in Issue
Jan 27, 2021
Abstract Views
PDF Downloads
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Altman, E. I., Marco, G., & Varetto, F. (1994). Corporate distress diagnosis: Comparisons using linear discriminant analysis and neural networks (the Italian experience). Journal of Banking and Finance, 18(3), 505–529.

Bakkalbasi, N., Bauer, K., Glover, J., & Wang, L. (2006). Three options for citation tracking: Google Scholar, Scopus and Web of Science. BMC Biomedical Digital Libraries, 3(7), 1–8.

Burkhalter, B. (1963). Applying artificial-intelligence to pattern-cutters problem. Operations Research, 11, 39.

Callan, J. P., Croft, W. B., & Harding, S. M. (1992). The INQUERY retrieval system. In Database and expert systems applications (pp. 78–83). Springer Vienna.

Cavalcante, R., Brasileiro, R. C., Souza, V. L. F., Nobrega, J. P., & Oliveira, A. L. I. (2016). Computational intelligence and financial markets: A survey and future directions. Expert Systems with Applications, 55, 194–211.

Chadegani, A. A., Salehi, H., Yunus, M., Farhadi, H., Fooladi, M., Farhadi, M., & Ale Ebrahim, N. (2013). A comparison between two main academic literature collections: Web of Science and Scopus databases. Asian Social Science, 9(5), 18–26.

Chan, F. T. S., Jiang, B., & Tang N. K. H. (2000). Development of intelligent decision support tools to aid the design of flexible manufacturing systems. International Journal of Production Economics, 65(1), 73–84.

Cho, V. (2003). A comparison of three different approaches to tourist arrival forecasting. Tourism Management, 24(3), 323–330.

Choi, J. J., & Ozkan, B. (2019). Innovation and disruption: Industry practices and conceptual bases. In J. J. Choi & B. Ozkan (Eds.), Disruptive innovation in business and finance in the digital world (Vol. 20, pp. 3–13). Emerald Publishing Limited.

Chopra, K. (2019). Indian shopper motivation to use artificial intelligence: Generating Vroom’s expectancy theory of motivation using grounded theory approach. International Journal of Retail & Distribution Management, 47(3), 331–347.

Choy, K. L., Lee, W. B., Lau, H. C. W., & Choy, L. C. (2005). A knowledge-based supplier intelligence retrieval system for outsource manufacturing. Knowledge-Based Systems, 18(1), 1–17.

Daim, T. U., Rueda, G., Martin, H., & Gerdsri, P. (2006). Forecasting emerging technologies: Use of bibliometrics and patent analysis. Technological Forecasting and Social Change, 73(8), 981–1012.

Das, S. R., & Chen, M. Y. (2007). Yahoo! for amazon: Sentiment extraction from small talk on the Web. Management Science, 53(9), 1375–1388.

Dermirkan, H., & Delen, D. (2013). Leveraging the capabilities of service-oriented decision support systems: Putting analytics and big data in cloud. Decision Support Systems 55(1), 412–421.

Fedra, K. (1994). Models, GIS, and expert systems: integrated water resources models. In K. Kovar & H. P. Nachtnebel (Eds.), Applications of geographic information systems in hydrology and water resources management (pp. 297–308). IAHS.

Furner, J. (2014). The ethics of evaluative bibliometrics. In B. Cronin, & C. Sugimoto (Eds.), Beyond bibliometrics: Harnessing multidimensional indicators of scholarly impact (pp. 85–107). MIT Press.

Garfield, E. (1955). Citation index for science. A new dimension in documentation through association of ideas. Science, 122(3159), 108–111.

Goodman, D., & Deis, L. (2005). Web of Science (2004 version) and Scopus. The Charleston Advisor, 6(3), 5–21.

Guz, A. N., & Rushchitsky, J. J. (2009). Scopus: A system for the evaluation of scientific journals. International Applied Mechanics, 45(4), 351–362.

Hirsch, J. E. (2005). An index to quantify an individual’s scientific research output. Proceedings of the National academy of Sciences, 102(46), 16569–16572.

Huang, Z., Chen, H., Hsu, C.-J., Chen, W.-H., & Wu, S. (2004). Credit rating analysis with support vector machines and neural networks: A market comparative study. Decision Support Systems, 37(4), 543–558.

Ince, H., & Aktan, B. (2009). A comparison of data mining techniques for credit scoring in banking: A managerial perspective. Journal of Business Economics and Management, 10(3), 233–240.

Jan, M. N., & Ayub, U. (2019). Do the Fama and French five-factor model forecast well using ANN? Journal of Business Economics and Management, 20(1), 168–191.

Karimova, F. (2016). A survey of e-commerce recommender systems. European Scientific Journal, 12(34), 75–89.

Kozma, R. B., & Russell, J. (1997). Multimedia and understanding: Expert and novice responses to different representations of chemical phenomena. Journal of Research in Science Teaching, 34(9), 949–968.<949::AID-TEA7>3.0.CO;2-U

Kusiak, A., & Chen, M. (1988). Expert systems for planning and scheduling manufacturing systems. European Journal of Operational Research, 34(2), 113–130.

Lebailly, L., Martin-Clouaire, R., & Prade, A. (1987). Use of fuzzy logic in a rule-based system in petrolium geology. In Approximate reasoning on Intelligent Systems, Decision and Control (pp. 125–144).

LeBaron, B., Arthur, W. B., & Palmer, R. (1999). Time series properties of an artificial stock market. Journal of Economic Dynamics and Control, 23(9–10), 1487–1516.

Lee, L. W., Dabirian, A., McCarthy, I. P., & Kietzmann, J. (2020). Making sense of text: Artificial intelligence-enabled content analysis. European Journal of Marketing, 54(3), 615–644.

Lee, Y. K., & Park, D. W. (2018). Design of internet of things business model with deep learning artificial intelligence. International Journal of Grid and Distributed Computing, 11(7), 11–22.

Li, B., Hou, B., Yu, W., Lu, X., & Yang, C. (2017). Applications of artificial intelligence in intelligent manufacturing: A review. Frontiers of Information Technology & Electronic Engineering, 18(1), 86– 96.

Luo, H., Du, B., Huang, G. Q., Chen, H., & Li, X. (2013). Hybrid flow shop scheduling considering machine electricity consumption cost. International Journal of Production Economics, 146(2), 423–439.

Maknickiene, N., & Maknickas, A. (2013). Financial market prediction system with Evolino neural network and Delphi method. Journal of Business Economics and Management, 14(2), 403–413.

Marinchak, C. L. M., Forrest, E., & Hoanca, B. (2018). The impact of artificial intelligence and virtual personal assistants on marketing. In D. B. A. M. Khosrow-Pour (Ed.), Encyclopedia of information science and technology (4th ed., pp. 5748–5756). IGI Global.

McCarthy, J. (1960). Programs with common sense (pp. 300–307). RLE and MIT Computation Center.

Miles, R. E., & Snow, C. C. (1986). Organizations: New concepts for new forms. California Management Review, 28(3), 62–73.

MIT Sloan Management Review. (2017). Reshaping business with artificial intelligence. Closing the gap between ambition and action.

Moed, H. F. (2005). Citation analysis in research evaluation. Springer, Dordrecht.

Morikawa, M. (2016). The effects of artificial intelligence and robotics on business and employment: Evidence from a survey on Japanese firms. Research Institute of Economy, Trade and Industry (RIETI).

Mutasa, S., Sun, S., & Ha, R. (2020). Understanding artificial intelligence based radiology studies: What is overfitting? Clinical Imaging, 65, 96–99.

Mylopoulos, J., Borgida, A., Jarke, M., & Koubarakis, M. (1990). Telos: Representing knowledge about information systems. ACM Transactions on Information Systems, 8(4), 325–362.

Nicholson, J. K., Lindon, J. C., & Holmes, E. (1999). “Metabonomics”: Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica, 29(11), 1181–1189.

Patel, V. L., Shortliffe, E. H., Stefanelli, M., Szolovits, P., Berthold, M. R., Bellazzi, R., & Abu-Hanna, A. (2009). The coming of age of artificial intelligence in medicine. Artificial Intelligence in Medicine, 46(1), 5–17.

Plastino, E., & Purdy, M. (2018). Game changing value from artificial intelligence: Eight strategies. Strategy & Leadership, 46(1), 16–22.

Ramakrishna, S., Ngowi, A., De Jager, H., & Awuzie, B. O. (2020). Emerging industrial revolution: Symbiosis of Industry 4.0 and circular economy: The role of universities. Science Technology and Society, 25(3), 505–525.

Rampersad, G. (2020). Robot will take your job: Innovation for an era of artificial intelligence. Journal of Business Research, 116, 68–74.

Rozinat, A., & Van der Aalst, W. M. P. (2008). Conformance checking of processes based on monitoring real behaviour. Information Systems, 33(1), 64–95.

Sabherwal, R., & Chan, Y. E. (2001). Alignment between business and IS strategies: A study of prospectors, analyzers, and defenders. Information System Research, 12(1), 11–33.

Sheta, F. A., Ahmed, S. E. M., & Faris, H. (2015). A comparison between regression, artificial neural networks and support vector machines for predicting stock market index. International Journal of Advanced Research in Artificial Intelligence, 4(7).

Shravan Kumar, B., & Ravi, V. (2016). A survey of the applications of text mining in financial domain. Knowledge-Based Systems, 114, 128–147.

Shwartz, I. S., Richard, E., Gregory, S., Haven, N., & Donald, P. (1993). Database retrieval system having a natural language interface. Google Patents.

Soltani-Fesaghandis, G., & Pooya, A. (2018). Design of an artificial intelligence system for predicting success of new product development and selecting proper market-product strategy in the food industry. International Food and Agribusiness Management Review, 21(7), 847–864.

Stalidis, G., Karapistolis, D., & Vafeiadis, A. (2015). Marketing decision support using artificial intelligence and knowledge modeling: Application to tourist destination management. Procedia – Social and Behavioral Sciences, 175, 106–113.

Sun, Z.-L., Choi, T.-M., Au, K.-F., & Yu, Y. (2008). Sales forecasting using extreme learning machine with applications in fashion retailing. Decision Support Systems, 46(1), 411–419.

Swaminathan, J. M., Smith, S. F., & Sadeh, N. M. (1998). Modeling supply chain dynamics: A multiagent approach. Decision Sciences, 29(3), 607–631.

Tague-Sutcliffe, J. (1992). An introduction to informetrics. Information Processing & Management, 28(1), 1–3.

Tam, K. Y., & Kiang, M. Y. (1992). Managerial applications of neural networks: The case of bank failure prediction. Management Science, 38(7), 926–947.

Traag, V. A., Van Dooren, P., & Nesterov, Y. (2011). Narrow scope for resolution-limit-free community detection. Physical Review E, 84(1), 016114.

Trafalis, T., & Ince, H. (2000). Support vector machine for regression and applications to financial forecasting. In Proceedings of the IEEE-INNS-ENNS International Joint Conference on Neural Networks. IJCNN 2000. Neural Computing: New Challenges and Perspectives for the New Millennium (vol. 6, pp. 348–353).

Van Assen, M., Lee, S. J., & De Cecco, C. N. (2020). Artificial intelligence from A to Z: From neural network to legal framework. European Journal of Radiology, 129, 109083.

Van Eck, N. J., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84, 523–538.

Van Eck, N. J., & Waltman, L. (2015), “VOSviewer manual”, Manual for VOSviewer Version 1.6.1. Universiteit Leiden.

Van Eck, N. J., & Waltman, L. (2017). Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics, 111(2), 1053–1070.

Van Raan, A. F. (2014). Advances in bibliometric analysis: Research performance assessment and science mapping. In W. Blockmans, L. Engwall, & D. Weaire, Bibliometrics. Use and abuse in the review of research performance (pp. 17–28). Portland Press Ltd.

Waaijer, C. J., Van Bochove, C. A., & van Eck, N. J. (2011). On the map: Nature and science editorials. Scientometrics, 86(1), 99–112.

Wagner, C. (2006). Breaking the knowledge acquisition bottleneck through conversational knowledge management. Information Resources Management Journal, 19(1), 70–83.

Waltman, L., & Van Eck, N. J. (2012). A new methodology for constructing a publication-level classification system of science. Journal of the American Society for Information Science and Technology, 63(12), 2378–2392.

Wei-Yang, L., Ya-Han, H., & Chih-Fong, T. (2012). Machine learning in financial crisis prediction: A survey. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 42(4), 421–436.

Weng, B., Martínez, W., Tsai, Y. T., Li, C., Lu, L., Barth, J. R., & Megahed, F. M. (2018). Macroeconomic indicators alone can predict the monthly closing price of major US indices: Insights from artificial intelligence, time-series analysis and hybrid models. Applied Soft Computing, 71, 685–697.

West, J., & Bhattacharya, M. (2016). Intelligent financial fraud detection. Computers & Security, 57, 47–66.

Wilson, R. L., & Sharda, R. (1994). Bankruptcy prediction using neural networks. Decision Support Systems, 11(5), 545–557.

Wirth, N. (2018). Hello marketing, what can artificial intelligence help you with? International Journal of Market Research, 60(5), 435–438.

Wong, K. K. L., Fortino, G., & Abbott, D. (2020). Deep learning-based cardiovascular image diagnosis: A promising challenge. Future Generation Computer Systems, 110, 802–811.

Xing, F. Z., Cambria, E., & Welsch, R. E. (2018). Natural language based financial forecasting: A survey. Artificial Intelligence Review, 50(1), 49–73.

Yu, Q., Miche, Y., Séverin, E., & Lendasse, A. (2014). Bankruptcy prediction using Extreme Learning Machine and financial expertise. Neurocomputing, 128, 296–302.

Zatorski, R. J. (1970). Picture-language interaction in the artificial intelligence. Australian Computer Journal, 2(4), 173–179.