First, we cover the conical curves on 2-dimensional modeling sphere S2 showing their geometric properties affecting the hyperbolic navigation. We place emphasis on the geometric definition of spherical parabola and relate it to the notions of spherical ellipse and hyperbola and give simple geometric proofs for relations between conical curves on the sphere. In the second part of the paper function representing the ratio of the circle's circumference to its diameter has been defined and researched to analyze the potential discrepancies in the spherical and conical projective models on which the navigational computations are based on. We compare some non-Euclidean geometric properties of curved surfaces and its Euclidean plane model in reference to the local and global approximation. As a working tool we use function for geometric comparison analysis in the theory of long-range navigation and cartographic projection. We state the existence of the infinite number of the circles having the same radius but different circumference on the conical surface. Finally, we survey the exemplary proposals of generalization of function . In particular, we focus on the geometric structure of applied model treated as a metric space showing the differences in the outputting computations if the changes in a metric are made. We also relate the function to Tissot's indicatrix of distortion.
Kopacz, P. (2012). On geometric properties of spherical conics and generalization of π in navigation and mapping. Geodesy and Cartography, 38(4), 141-151. https://doi.org/10.3846/20296991.2012.756995
Authors who publish with this journal agree to the following terms
that this article contains no violation of any existing copyright or other third party right or any material of a libelous, confidential, or otherwise unlawful nature, and that I will indemnify and keep indemnified the Editor and THE PUBLISHER against all claims and expenses (including legal costs and expenses) arising from any breach of this warranty and the other warranties on my behalf in this agreement;
that I have obtained permission for and acknowledged the source of any illustrations, diagrams or other material included in the article of which I am not the copyright owner.
on behalf of any co-authors, I agree to this work being published in Geodesy and Cartography as Open Access, and licenced under a Creative Commons Licence, 4.0 https://creativecommons.org/licenses/by/4.0/legalcode. This licence allows for the fullest distribution and re-use of the work for the benefit of scholarly information.
For authors that are not copyright owners in the work (for example government employees), please contact VILNIUS TECH to make alternative agreements.