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1. Introduction 

The practical importance of the computation of hyper-
bolic position lines has often been discussed. The lines of 
altitude difference originally applied to astronomical po-
sition lines are hyperbolic position lines, as are also the 
position lines of equal difference in distance from two 
transmitters used to be adapted in such electronic fixing 
systems as Decca, Loran and Omega. For instance, we 
refer the reader to Freiesleben (1976) which deals with 
geometric construction of hyperbolae on a spherical sur-
face for navigational application. 2-dimensional differen-
tiable manifolds of positive curvature are mostly used to 
model the Earth’s surface globally. In the paper firstly we 
consider 2-dimensional sphere S2 and we find the range 
of values for the ratio of the circumference of an arbi-
trary circle to its diameter in general. The spherical mod-
el is also used in cartography creating the frame of the 
navigational charts for instance in the stereographic pro-
jection. In particular, the flow of the geodesics and the 
rhumb line looks different depending on the method of 
the projections given by the strict formulae. More pre-
cisely as the Earth’s model an oblate spheroid is widely 
applied providing the base for the navigational computa-
tions. The navigational computations generally mean the 

computations of two essential notions: the distance and 
angle. These notions are computed and output directly to 
the user as the final results or state for the basement for 
the further calculations e.g. ROT, speed. Thus, we place 
special emphasis on the geometric structure of models 
applied in navigation. The spherical conics can be de-
fined in natural terms as the locus of the set of points 
having certain properties which depend only on the no-
tions of angle and distance. The geometric structure im-
plies the way of calculating the distances, angles and fi-
nally the form of formulae applied in the navigational 
software. Obviously, the knowledge and understanding 
the geometric properties coming from the foundations 
of used geometric modeling structure implies the proper 
understanding of limitations and boundary conditions of 
safe using the navigational systems, software, methods, 
algorithmic procedures based on it as well as their reli-
ability, indications, approximations and potential errors. 

Geometrically we can treat the modeling surfaces 
e.g. sphere, spheroid or triaxial ellipsoid as the special 
subset of more general manifolds. We recall that the 
manifold must be Riemannian to measure distances and 
angles on it. Briefly, a Riemannian manifold is an ana-
lytic manifold in which each tangent space is equipped 
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with an inner product in a manner which varies smooth-
ly from point to point. This allows one to define various 
notions such as length, angles, areas, curvature, gradients 
of functions and divergence of vector fields. 

Locally in the physical (Euclidean) 3-dimensional 
space we approximate curved surface by the Euclidean 
plane tangent in a given position. That is satisfactory 
if we do not exceed the required accuracy of provided 
computations. However in geodesy, navigation, cartogra-
phy or astronomy there are many examples when non-
Euclidean notions differ essentially from their flat ana-
logues. In particular, the range of defined in the further 
part of the paper function  may differ essentially from 
the constant number  representing the ratio of an arbi-
trary circle’s circumference to its diameter on the plane. 
That means the plane locally approximating model may 
not satisfy the accuracy requirements for the precise cal-
culations in the real world. Hence, the boundary condi-
tions of the models e. g. Euclidean plane or spherical ge-
ometry ought to be strictly determined in the potential 
applications. For curved or more complicated surfaces 
the notion of metric can be used to compute the distance 
between two points by integration. The distance general-
ly means the shortest distance between two points. Most 
often the research and calculus in the navigational litera-
ture are considered on the spherical or spheroidal mod-
els of Earth because of the practical reasons. The flow of 
geodesics on the spheroid differs from the geodesics on 
the sphere. There are known different geodesics on the 
same surface with the same metric considered. However 
geodesic refers to the metric. There are different flows of 
geodesics on the same surface when different metrics are 
applied. That means we can obtain very interesting re-
sults in the navigational aspect if we change researched 
object with its geometrical and physical features. The ex-
amples of the differences in the forms of the metrics im-
plying the different computational results of  are shown 
in the further part of the paper. 

2. Spherical conics 

The conical curves (circle, ellipse, hyperbola, parabola) 
considered on the Euclidean plane are widely known and 
can also be found in the navigational applications. Dis-
cussing the geometry of ellipses and hyperbolae on the 
sphere we recall here these are the curves which corre-
spond to position lines based on the constant sum or the 
absolute value of difference of distances from two fixed 
points. For instance, the net of hyperbolic lines of posi-
tions used to be added to the navigational charts in hy-
perbolic navigation, in particular in system Decca or still 
in Loran. The Euclidean plane is used to approximate the 
Earth surface locally meeting required accuracy; howev-
er the limits of approximation must be determined clear-
ly. In the local geodesic terrain modeling the area of the 
Earth can be treated flat if it is inside the circle of the ra-
dius ca. 15.5 km. Then its area does not exceed 760 km2. 
This corresponds to the spherical area of the circle of the 
diameter ca. 17’ of the great circle (Kopacz 2010). Practi-
cally, the results of the direct geodetic measurements and 
the calculations provided in such an area neglecting the 
curvature of the Earth can be provided on the plane in 

a proper scale. Then for the simplicity the limitations of 
cartographic projections can be omitted and the results 
are satisfactory in many applications. The surface of the 
Earth may be taken mathematically as a sphere instead 
of ellipsoid for maps at smaller scales. In practice, maps 
at scale 1:5000000 or smaller can use the mathematically 
simpler sphere without the risk of large distortions. 

In global modeling the situation is essentially dif-
ferent. For instance, the radionavigation bearing cannot 
be considered only as the straight line on the plane but 
the geodesic. If we use the spherical model then such a 
bearing line means the arc of a great circle. Approximat-
ing the area of spherical equidistant triangle which side 
length equals 400 km as a flat Euclidean triangle makes a 
difference of ca. 232 km2 at the accuracy of ⅔’’ for angle 
measurement. 

2.1. Spherical ellipse and hyperbola
Let us transform now the definition of the conical curves 
from the Euclidean plane to the “spherical plane”, i.e. 
sphere S2. We look for the corresponding notions of the 
flat conical curves on the 2-dimensional sphere. To com-
pute a curve of equal sums of distances from two points 
on the sphere (which corresponds to an ellipse on the 
plane) the simplest method is to follow the graphical 
construction, points on the curve being defined by the 
intersection of circles round the two foci, so that the sum 
of the distances remains constant while the radii change 
by unitary steps. 

Let F1, F2 be the points on the 2-dimensional sphere 
S2, F1 ≠ F2 and the spherical distance 1 2, : 2  .F F c  
We define the geometric locus for which the sum of the 
distances to foci F1, F2 is constant and equals 2a. So the 
spherical ellipse is a set of positions P:

2
1 2 : , , 2 .P S P F P F a  (1)

In the Euclidean plane there exists one restriction:  
c < a. As the shortest spherical distance cannot be larg-
er than  there is additional restriction in spherical ge-
ometry: c a c . The graphical presentation of the 
family of ellipses with given focal points F1, F2 as the pa-
rameter a varies from its minimum to maximum value is 
presented in http://3d-xplormath.org. 

Let F  state for the antipodal point of the corre-
sponding focal point F. The spherical hyperbolae include 
one of these foci and the opposite point in the other 
hemisphere, in each of two separate families of curves. It 
would therefore seem likely that the spherical hyperbolae 
and ellipses are related, and indeed it is easy to demon-
strate this. Thus, , , .P F P F  On the spherical 
surface we observe the relation between the ellipses and 
hyperbolae as follows:

2
1 2: ,  , 2  : , ( , ) 2P S P F P F a

2
1 2: , ( , ) 2P S P F P F a . (2)

The relations between geometric properties of coni-
cal curves state for the crucial foundations of models 
used in practical applications. For the equation of the 
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spherical ellipse in terms of the inner products and as a 
homogenous quadratic equation we refer the reader to 
Poodiack (2004). Thus we observe that the spherical el-
lipse is the intersection of the unit sphere with a quad-
ratic cone whose vertex is positioned at the midpoint of 
the sphere. So, if one projects a spherical ellipse from the 
midpoint of the sphere onto some plane then one obtains 
a (planar) conic section. We research the connections be-
tween the circles in the conical and spherical models in 
next paragraph using as a tool the ratio of the circle’s cir-
cumference to its diameter representing by defined fur-
ther function .

The navigational charts were prepared in such a way 
to show the curves of the constant absolute value of the 
difference of the distances to the two transmitting sta-
tions. In areas of the sea where the sets of curves (for 
at least two pairs of transmitters) intersect reasonably 
transversal it is sufficient to measure two time differenc-
es, then a look on the sea chart shows the ships position 
as the intersection point of two spherical hyperbolae. 
Following Griffiths and Culpin (1975) we recall since the 

lines of equal sums of distances from two points on the 
sphere are related to the lines of equal absolute value of 
differences of distances it would seem likely that the el-
lipses as well as the hyperbolae should be divided into 
sub-families separated by a great circle. The color-coded 
family of spherical conics and its corresponding domain 
is presented in Figure 1. The ellipses for foci F1 and F2 
may be regarded as hyperbolae for F1 and the antipodal 
point to F2, named 2F  (or for F2 and the antipodal point 
to F1, named 1).F  Thus, part of the family of hyperbolae 
which relate to focus F2 and the point diametrically op-
posite to focus F1 is identical with the family of ellipses 
which include the same two points. However the hyper-
bolae and ellipses denned in relation to the same pair of 
points are not identical. As in the plane, they are related 
by the fact that they intersect orthogonally. The example 
of the conical (elliptical) coordinates grid on plane chart 
is presented in Figure 2. The elliptic coordinate system 
is a two-dimensional orthogonal coordinate system in 
which the coordinate lines are confocal ellipses and hy-
perbolae (Kopacz 2013). 

Fig. 1. The color-coded family of spherical conics and its corresponding domain 

Fig. 2. The conical coordinates grid on the plane chart
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Spherical ellipses and hyperbolae having the same 
foci intersect orthogonally. For an ellipse, one of those 
foci is a focus of the hyperbola and the other the point 
opposite to the second focus of that hyperbola, the el-
lipse and hyperbola in general are not orthogonal. We 
also consider Tissot’s indicatrix (ellipse) referring to dis-
tortions of spherical circles in projection on the plane 
chart in paragraph 3.4. 

2.2. Spherical parabola

We now prove geometrically the relation between spheri-
cal ellipses and hyperbolae complementing another 
spherical conic, i.e. spherical parabola. We aim to show 
the geometric relationship between spherical ellipses, hy-
perbolae and parabolas. We follow the same notations as 
above. F2 determines uniquely its antipodal point 2F  and 
the referring spherical straight line f which is the great 
circle at spherical distance 0,5  from both points F2 and 

2F . Thus, the spherical circle f have two centers F2 and 
2F  like the equator and the poles what is shown in Fig-

ure 3. 

Fig. 3. The spherical conic “3 in 1” (parabola, ellipse, 
hyperbola)

In the Euclidean plane geometry parabola is the lo-
cus of points equidistant from a fixed line (directrix) and 
a fixed point (a focus) not on the line. Let us consider the 
set γ of all points on the sphere equidistant from a given 
point F1 and the spherical circle f. This is a spherical pa-
rabola of the focus F1 and the directrix f. Let F2 be in the 
hemisphere determined by f which includes the parabo-
la. Let P be the point of the parabola and denote PF1 by 

. Then the spherical distance from P to f equals  ac-
cording to the definition of parabola and 2 0,5 .PF  
Thus, 

1 2 0,5 const.PF PF  (3)

That means above mentioned spherical conic meets 
the definition of the spherical ellipse. Precisely, the same 
spherical conic which is the parabola of the focus F1 and 
directix f is also the ellipse of two foci F1 and F2. Moreo-
ver, if we consider the point 2F  and calculate the differ-
ence 1 2| |PF PF  as follows:

1 2 0,5 0,5 const.,PF PF  (4)

then we obtain the constant value 0,5 . Thus, above men-
tioned spherical conic also fulfills the definition of the hy-

perbola. So the same spherical curve satisfies the defini-
tion of parabola, ellipse and hyperbola on the sphere S2 
what is presented geometrically in Figure 3 (Kopacz 2013). 

We showed the spherical curve γ is the parabola of 
the focus F1 and directix f, the ellipse of two foci F1 and 
F2 and the hyperbola of two foci F1 and 2F . More gener-
ally, it can be shown that on the sphere each ellipse is 
a hyperbola and vice versa. Additionally assuming that f 
covers the spherical equator and if F1 is positioned in the 
center F2 of the directrix f, i.e. F1 = F2 then the spherical 
parabola is a parallel of latitude of 0.25  (45°) so it is also 
the particular case of the spherical circle. 

The spherical conics have various applications in 
navigation from the geometrical point of view. They of-
ten create the foundations for the methods and the fol-
lowing computations based on them. We recall the con-
tributions presented in Freiesleben (1976) which also 
affects only the spherical model so included equations 
are valid only for the sphere and not for the ellipsoid. 
In this article our aim is to place the special emphasis 
on the geometric approach to the subject instead of the 
analytic computations. The geometry of modelling struc-
tures implies the calculus essentially, in particular the 
mathematical formulae in the algorithms applied in the 
navigational electronic device and systems. For instance, 
the navigation based on geodesic lines and connected 
software of the ship’s devices (electronic chart, position-
ing and steering systems) gives a strong argument to re-
search and use geodesic-based methods for calculations 
instead of the loxodromic trajectories in general. Next 
step is the research of the conical curves on the locally 
and globally modelling differentiable manifolds of the 
Earth surface having differing curvatures, including the 
spheroid and triaxial ellipsoid. The theory on geodes-
ics is developing as well what may be found in the wide 
literature on geometry and topology. This motivates to 
discuss the subject in more general geometric structures 
and research its properties in the navigational context. 

3. Spherical and conical circles  function 

First, we consider the notion of set’s diameter applied in 
the further reading. 

Definition. The diameter d of a non-empty set 
A X  in a metric space (X, ) is the supremum of the 
distances  between pairs of points in the set A:

, , .supx y Ad A x y  

Briefly, the generalized diameter is the greatest 
distance between any two points on the boundary of a 
closed figure.

3.1. Sphere S2

The great circle is the equivalent of the Euclidean straight 
line, it has the finite distance and it is closed. To obtain 
the spherical distance between two points on the two di-
mensional sphere S2 the notion of the latitude is used for 
our calculations. We aim to consider the whole family of 
the spherical circles (great and small). It is always pos-
sible to orient our sphere in such a way that considered 
circle becomes a parallel of latitude. We use this observa-
tion to obtain the diameter of the circles on curved sur-
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faces (2-dimensional differentiable manifolds), in par-
ticular the spherical and conical circles. The notion of 
circle’s diameter is rather intuitive in the spherical case 
however it is not so in a conical one considered in para-
graph 3.2. The mathematical formulae used in approxi-
mation of the navigational computations are being stud-
ied and mostly based on the spherical (spheroidal) global 
model. However if we research a different “shape” of 
the modeling surface the formulae change considerably. 
Let us imagine that the vessels do not sail on spheroidal 
Earth but locally torus - shaped planet. In that case the 
flow of geodesics, the rhumb line or projected charts are 
based on other mathematical expressions due to the fact 
the different geometrical structure is applied. The torus 
T 2 = S1 x S1 is topologically more simple than the sphere, 
yet geometrically it is a very complicated manifold in-
deed. The round torus metric is most easily constructed 
via its embedding in a Euclidean space of one higher di-
mension. 

Let R > 0 be the radius of the sphere. Then the length 
of its equator equals 2 R and the length of the diameter 
d equals two spherical radii and it is a half of the equator, 
that is d =  R. Thus, the ratio of the circumference of the 
great circle to its diameter equals 2. Figure 4 shows the 
diameter d of spherical circle l at the latitude x passing 
through the spherical circle’s center positioned in S. 

Fig. 4. The diameter of the spherical circle (Kopacz 2010)

Without loss of generality the length L of the spher-
ical circle (great and small) can be obtained from: 

2 cos ,L R x   (5)

where x denotes the latitude in radians, 

0; .
2

x  

For the latitude 
3

 the length of the corresponding 
circle is a half of the length of the equator i.e. R and 
the diameter equals 1 2

6
R . Hence, the ratio of the cir-

cumference of the circle to its diameter equals 3. It be-
comes clear that the ratio of circumference to the cor-
responding diameter is not constant and does not equal 

  = 3.1415926535… as in the flat Euclidean geometry. 
We ask here what is the range of the ratio in general? We 
define the function : →  representing the ratio of 
the circumference of the circle to its diameter and deter-
mined in the following general way: 

.L
d

 (6)

In the spherical case the latitude x as the variable is 

applied so ( )( ) .
( )

L xx
d x

 Then we obtain the formula for 

the diameter of a spherical circle d:

2 .
2

d R x  (7)

Thus, for 0;
2

x  

2 cos 2( ) cos .
22

2

R xx x
xR x

 (8)

Function  is increasing in considered domain and 
its range ( ) 2; .x  Without the loss of generality 

we limited the domain of  down to 0,
2

 what cor-

responds the northern hemisphere without a pole where 
the latitude is positive and takes into account all the cir-
cles of the whole sphere. Obviously, there is analogous 
situation in the southern hemisphere where the latitude 
is negative. Thus, we obtain  for the spherical circles at 
arbitrary latitude as follows:

2( ) cos .
2

x x
x

 (9)

Corollary: On 2-dimensional sphere the ratio of the 
circumference of an arbitrary non-degenerated (r  >  0) 
circle to its diameter is not constant and ranges 2; . 

Figure 5 presents the graph of y-axe symmetric  

function for ; .
2 2

x  

Fig. 5. The graph of function ( ) y x for the spherical 
circles (Kopacz 2010)
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In the boundary case when the radius r of the small 
spherical circle becomes shorter and shorter ( 0)r  
then ( ) .x  As the Earth’s model the sphere S2 or the 
spheroid is most often used and locally their surface is 
approximated by the Euclidean plane tangent in a given 
position. For some applications such approximation is 
practically allowed and sufficient for researched prob-
lem. However in the situation when the strict bound-
ary accuracy is required and the global model of the 
Earth’s surface is considered (long-range navigation, 
cartographic projections in small scales, astronomy) the 
Euclidean geometry becomes not sufficient for the geo-
metric description and the analytic calculations coming 
from it. Then the value of function  differs from  es-
sentially ( ( ) )x  and the limits of the approximations 
based on the flat Euclidean geometry ought to be clearly 
determined. The formulae based on the plane model and 
Euclidean geometry one may find, for instance, in the 
navigational software applied on the Dynamic Position-
ing (DP) vessels. 

If S2 is considered for global modeling then as a 
calculating tool the spherical trigonometry is also used 
which states the basis for the comparison analysis and 
algorithms implemented in the software of navigational 
aids. If the spheroids of differing eccentricity model the 
Earth surface then the corresponding tools are applied 
including great ellipse or generally geodesic-based trajec-
tories. The Earth is not an exact ellipsoid, and deviations 
from this shape are continually evaluated. Although the 
basic solutions for navigational purposes have already 
been known and widely used there are still the new 
spherical and spheroidal approaches made to the subject. 
The main efforts affect the optimization and approxima-
tion methods which potentially may give the practical 
benefits for the navigators. We conclude here stating the 
curvature affects the geometry of the modeling surface 
essentially, in particular the flow of geodesic trajectories 
and the conical curves. 

3.2. Cone of revolution
We consider the modeling surface of revolution generat-

ed by the straight line of equation z = ay (a > 0) sloped at 

angle 0,
2

 to the axe y around axe z in the Carte-

sian coordinate system OXYZ. For instance, the function 
z(y) = y generates the double cone of revolution defined 
by 2 2 2z x y in 3. Let 0,z  we obtain the single 
cone of revolution which vertex is positioned in O  =  S 
(Fig. 6). We aim to find the range of  function.

Let us consider the set of the conical circles which 
are generated by the planes parallel to the base of the 
cone. These are the conical parallels of latitudes and the 
point S is the center of all such conical circles. The coni-
cal surface is developed on the plane unlike the sphere. 
Our calculations are based on two parameters – distance 
l of the circle from the vertex of a cone and the angle  
determining the conical surface. Flattening it in the 2-di-
mesional Euclidean space 2 one obtains the flat disc 
without the central angle  what is shown in Figure 7. 
The length L of the conical circle equals 

(2 ).L l  (10)

Fig. 6. The conical parallel of latitude circle  
and its diameters (Kopacz 2010)

Fig. 7. The conical circle and its diameters in 2-dimensional 
Euclidean space 2  (Kopacz 2010)

Note that the diameter of a circle on the plane or 
sphere agrees to its ‘traditional’ definition followed by 
our Euclidean intuition. Nevertheless to find the diam-
eters of the conical circles we refer to above mentioned 
formal definition of set’s diameter and treat the circle as a 
particular subset. Let us observe that the diameter of the 
conical parallel of latitude circle does not pass through its 
center what is illustrated in Figure 7 and its length does 
not equal double length of circle’s radius. This fact is not 
so intuitive. Generally speaking, we note that the form of 
a modeling space, for example a metric space in which 
an approximation and the computations for navigational 
purposes, i.e. the distances and the angles, must be taken 
into consideration basically. Thus, it is necessary to re-
search how the distance between two positions in con-
sidered geometrical structure is determined, where the 
centre of the circle is positioned and how the diameter 
passes. The diameter of the conical circles fulfills the def-
inition of geodesic on the conical surface. Changing the 
metric causes the differences in the obtained distances. 
The notion of local metric is required to define geodes-
ics locally. We observe here that the conical circle has got 
two diameters AC and BC which length equals d in both 
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cases as presented in Figure 6 and Figure 7. Applying the 
cosine formula in the plane triangle ΔCSA we obtain:

2 2 2 2

2

( , ) 2 cos
2

2 1 cos .
2

d l AC AS CS AS CS

l (11)

Substituting AC = d and AS = CS =  l and recalling 
the length of the conical circle (10) the value of function 

: 2→ equals:

( , ) 2( , ) .
( , )

2 1 cos
2

L l
l

d l  (12)

We observe that the value of  does not depend 
on the distance l of the conical circle from its center S 
(the vertex of a cone) so on each cone all the parallels 
of latitude have the same ratio of the circumference to 
the diameter. However, this value is different for dif-
ferent cones  – it depends on the central angle . Thus, 

( ) 2;  for every 0; 2 .  The resulting func-
tion is continuous, decreasing and takes all values from 

(2; ). For example, if  then ( ) .
2

 The graph 

of ( )  for 0; 2  is presented in Figure 8. 
Corollary. On the cone of revolution of given central 

angle 0; 2  the ratio of the circumference of the par-
allel of latitude circle to its diameter is constant and the 
value is given by (12).

Fig. 8. The graph of function ( )y  for the conical  
parallel of latitude circles (Kopacz 2010)

In the paper we consider the conical parallel of 
latitude circles. This family of the circles is not the only 
subset of the circles on the cone. For the conical circles 
which does not contain the vertex of a cone in their inte-
rior ( )x  as they are equivalent to the common flat 
Euclidean circles. That can be easily shown after flatten-
ing the conical surface on the Euclidean plane 2. The 
third subset of the conical circles is created by the circles 
which are not centered in the vertex of a cone but con-
tain the vertex in their interior. Interestingly, this fam-
ily has the property which does not follow the Euclidean 
intuition. Hence, a careful approach is to be taken into 
consideration when providing, in particular long-range 
navigational calculations and presenting the results in 
the conical cartographic projections of smaller scale. As 
an illustrative example we ask the following question: 

Given a circle of radius r’  >  0 and center S’ which is not 
the vertex of a cone of revolution of given central angle 

0; 2 .  Does the circle of the same radius r’ and cen-
tered in the vertex of a cone have the same circumference? 
The answer is negative and differs from the obvious re-
sult obtained on the plane Euclidean model. The conical 
circle of the same radius r’ but centered in the vertex of 
a cone (parallel of latitude) does not have the same cir-
cumference. Moreover, we state the following 

Statement. On an arbitrary cone of revolution for 
each circle exists the infinite number of the circles of the 
same radius but different circumference. 

Thus, we observe the geometry affects essential-
ly the calculus based on it, in particular the range of  
function or the computations of notions crucial for navi-
gation – the distances and angles. Although the proofs of 
above mentioned statements do not require the technical 
calculations we do not give them because of the limited 
length of the article. Our research may state for the start-
ing point of such research on generalized cone. Then the 
cone of revolution is treated as a particular subset of the 
set of cones. 

Let us consider the cone which is tangent or secant 
to the spherical surface. The intersection of these two sets 
is a single circle or a doubleton of circles, respectively. 
Because of the fact the intersection is both the spherical 
and conical locus we can indicate the identically equiva-
lent circle of the spherical one on the flattened conical 
surface but of different properties e.g. radius, diameter or 
centre. Obviously, the results of comparing the geomet-
ric properties of an arbitrary circle and its image depend 
on applied projective transformation. For the simplicity 
the idea of transformation of oblique spherical circles 
onto conical surface is presented graphically in Figures 9  
and 10. 

Fig. 9. Transformation of oblique spherical circle  
to the secant conical surface (Bunch 2004)

One may find the conical model as a base in some 
cartographic projections applied in constructing the 
charts. 

Comparing the value of  function for both (the 
conical and spherical) intersecting surfaces it allows to 
determine the discrepancies between some geometric 
properties of modeling and modeled surface. Generaliz-
ing, the circles of modelling surfaces of differing curva-
ture can be transformed to another geometric structure. 
Such a transformation sometimes enables to know the 
properties of the original structure what is not possible 
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directly or is more complicated. We recall the shape of 
the circles may depend on the position of its center as 
well as the length of its radius. More generally, the trajec-
tories of the geodesic lines are determined by the metric 
which works in the geometrical structure used as a mod-
eling metric space. That affects the computations regard-
ing the distances and angles, in particular the outputting 
formulae. 

3.3. Exemplary generalization of 
By now we have considered the circular objects. Howev-
er in the layers of vector electronic navigational charts, 
for instance, there are the triangle or polygon-shaped ob-
jects. We can generalize the  function on the Euclidean 
plane locally approximating curved surface. 

Let F be an arbitrary plane, convex and bounded 
figure having non-empty interior. Then (F) we define 
as follows:

( )( ) ,
( )

L FF
d F

 (13)

where L(F) and d(F) denote the circumference and the 
diameter of the figure F, respectively. Then, basing on the 
definition of the set’s diameter mentioned above, for the 
equilateral triangle ( ) 3,F  for the square ( ) 2 2,F  
for an arbitrary triangle 2 ( ) 3,F  for an arbitrary 
rectangular of two sides a, b 

2 2

2( )( ) a bF
a b

 what 

implies 2 ( ) 2 2.F  From Barbier’s theorem stat-
ing that all figures of constant width d  have the same 
perimeter d  we conclude that for an arbitrary plane, 

convex, bounded and non-empty figure F we obtain 
2 ( ) .F  The equality occurs only for the figures of 
the constant width. The way of measuring the distance 
implies the changes not only in the shape of the circle 
but also its length. Thus, the ratio of the circumference 
to the diameter of the circle depends on the metric func-
tion as we have already mentioned in paragraph 3.2. For 
example, if we consider in 2 the distance (more generic 
Minkowski l p metrics) defined in the following way:

1

1 2 1 2
1 2

1 2 1 2

, 1 ( , )
max , ,    

p p p

p
x x y y pP P

x x y y p , (14)

where Pi  = (xi,  yi) denotes the i-position in considered 

structure, then function p
p

p

L
d

 depends basically on 

the above metric, where Lp, dp denote the circumfer-
ence and the diameter of generalized circle in the met-
ric defined by (14), respectively. Thus, for p = 2 it holds 

2 .  If p = 1 or p =   then 1 4.  The attempt 
of assessment the value of p  for 1 2p p meets 
the intrivial integrals, series and open questions, too. In 
Adler and Tanton (2000), Euler and Sadek (1999), Kel-
ler and Vakil (2009), Poodiack (2004) the authors also 
investigate the value of the numerical integration of  
as a function of p what yields to ,4 . The circle’s 
(sphere’s in general) form is determined by the metric, 
the position of its center and the radius. In many ana-
lytic fields of research and applications this is the metric 
which has essential influence on the geometric proper-

Fig. 10. Transformation of oblique spherical circle to tangent conical surface cut along the solid line  
and flattened out (http://mathworld.wolfram.com/ConicProjection.html)
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ties of the modeling structure. We conclude here without 
going into technical details there are still made theoreti-
cal contributions to the generalization of number . For 
the exemplary results we refer the reader to the literature 
on the geometry and functional analysis, in particular 
Adler and Tanton (2000), Euler and Sadek (1999), Keller 
and Vakil (2009), Poodiack (2004), Richter (2008). 

3.4. Tissot’s ellipse of distortion (indicatrix) and  
function

Tissot’s ellipse of distortion is used to characterize 
the distortions of original circles of mapped Earth’s sur-
face in different cartographic projections. Although the 
image of the original circle seems to be deformed it is the 
result of applied mapping function. Tissot’s indicatrices 
illustrate linear, angular and area distortions of maps. It 
is the geometry that results from projecting a circle of in-
finitesimal radius from curved geometric model onto a 
map. Tissot proved that the resulting diagram is an el-
lipse whose axes indicate the two principal directions 
along which scale is maximal and minimal at that point 
on the map. A single ellipse describes the distortion at 
a single point. Because distortion varies across a map, 
generally Tissot’s indicatrices are placed across a map 
to illustrate the spatial change in distortion. A common 
scheme places them at each intersection of displayed me-
ridians and parallels. These schematics are important in 
the study of map projections used for navigational pur-
poses, both to illustrate distortion and to provide the ba-
sis for the computations that represent the magnitude of 
distortion precisely at each point. 

Tissot’s indicatrix is based on a set of equally sized 
circles on curved surface of the globe. Different pro-
jecting functions distort them in different ways, either 
changing their size or their shape, or both. The example 
of the spherical circles set out at 30 degrees intervals (in 
latitude and longitude) with diameters of 15 degrees of 
latitude is presented in Figure 11. 

Fig. 11. The Tissot’s indicatrices based  
on a set of equally sized spherical circles  

(http://en.wikipedia.org/wiki/Tissot’s_indicatrix)

The circles defined in a spherical or ellipsoidal 
model of the Earth are imaged by the Tissot’s ellipses 
of distortion that result from their projection on the 
plane chart. The example of plane map of the world in 
an equirectangular projection with Tissot’s indicatrix of 
distortion of radius of 500 km is presented in Figure 12.

Fig. 12. Map of the world in an equirectangular  
projection with Tissot’s ellipses of distortion  

(http://en.wikipedia.org/wiki/Tissot’s_indicatrix)

Finding the circumference of a plane ellipse of semi-
major axis a and semi-minor axis b involves the complete 
elliptic integrals of second kind. Applying the power se-
ries we calculate the circumference with required accu-
racy and then we obtain the formula for  function in 

case of a plane ellipse. Substituting 
2 2a be
a

 yields 

(Bronstein, Semendjajew, Musiol, Muhlig 2001):

2 2 24 6
21 1 3 1 3 52 1 .

2 2 4 3 2 4 6 5
e eL a e   (15)

Following the definition of set’s diameter mentioned 
above the diameter of the plane ellipse equals d = 2a . 
Hence:

2 2 24 6
21 1 3 1 3 51 .

2 2 4 3 2 4 6 5
L e ee
d

 (16)

We observe for the plane ellipse  ranges 2, . It 
is possible to calculate the value of  function for hy-
perbola and parabola on the sphere (ellipsoid) which 
we considered in paragraph 2.1 and paragraph 2.2. This 
property differs from the same conical curves considered 
on the plane. The circular Tissot’s indicatrices of distor-
tion in the Lambert conical conformal projection on 
conical surface is presented in Figure 13. 

In the paper we have focused on the spherical and 
conical circles. The circle as the intersection of two sur-
faces have in general the same circumferences but dif-
ferent radii, diameters and the positions of the center if 
we consider it as the particular subsets of the intersect-
ing structures separately. The value of  function for 
the same circle generally ranges differing values in both 
cases. We may use  function as a parameter showing 
the differences in the geometric properties of the circles 
embedded in the original geometric structure (mod-
eled space, surface) as a basic object and presenting its 
geometric property in comparison to its image (mod-
eling structure), for example projective curved surface. 
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Both modeled and modeling one may be connected by 
the projective function. It represents one of the funda-
mental geometric quantities which is the ratio of the cir-
cle’s circumference to its diameter. However, the image 
of transformed circle should not be treated as distortion 
like Tissot’s indicatrix but the natural form of the circle 
existing in modeling structure. As we showed above the 
possible generalizations of  function can also be used 
for other than circle-shaped objects. Additionally, we no-
tice that the theoretical research affects the n-dimension-
al objects, mapping and the abstract mathematical fields 
where the  function and its equivalents are used fruit-
fully. 

The bijective function  gives a unique solution for 

an arbitrary spherical circle of radius 0, .
2

r  That 

means in the inverse problem assuming the boundary 
condition for the value of  we obtain the unique spher-
ical length of the radius r. This determines the coverage 
area centered at the spherical circle’s center (e.g. the posi-
tion of navigational transmitting station) where  func-
tion does not exceed required value. Approximating lo-
cally the spherical surface (curved space in general) by 
the plane model we cannot omit the differences in the 
geometric properties of both structures. In particular, 
we can define the relative error (r) for function  in 
case of the spherical circle is approximated by the plane 
circle of the same radius on the tangent plane and cen-
tered in the same position. Recalling (9) and substituting  

2
r x  we obtain for 0, :

2
r  

r xx rx r
rx

2
100%  1 100%.

sin
 (17)

The graph of increasing and convex function (r) is 
presented in Figure 14. 

The relative error (r) may be defined for other 
curved surfaces and show the discrepancies in computa-
tions due to differences in the geometries of connected 
modeling and modeled structures. The geometries of the 
structures which naturally differ affect the navigational 
computations made in them. 

Fig. 14. The graph of relative error (r)  

for the spherical circle of radius 0, 
2

r  

4. Conclusions

In calculus it is of crucial importance that we state on 
which geometry we place our truths.We aim to recall the 
importance, usefulness and otherness of some geomet-
ric properties coming from non-Euclidean geometries 
which affect the base of computations referring the an-
gle and distance measurements. These two notions are 
fundamental for navigational computations. If space is 
curved then Euclidean geometry, which is one of many 
axiomatic systems, does not apply. The flow of geodesic 
trajectories depends on the type of metric we use in mod-
elling geometric structure, in particular 2-dimensional 
surface of positive curvature like sphere or spheroid. Our 
research on conical curves presented here in the spheri-
cal case may state for the starting point of such research 
on surfaces of differing curvature, in particular spheroid 
and triaxial ellipsoid. As a working tool function  was 
used which researches the ratio of the circle’s circumfer-
ence to its diameter. The circle is one of the fundamen-
tal geometric objects and the diameter depends on the 
geodesic flow if there exists. Researching the ratio it is 
necessary to answer first how the circle looks like in con-
sidered geometric structure, how the distance between 
two points is determined, where the center of the circle 
is positioned and how the diameter passes. As compar-
ing Euclidean example we presented the diameter of the 
conical parallel of latitude which does not pass through 
its centre. That differs from both the plane and spheri-
cal model. The Euclidean intuition insists on looking at 
the diameter as a part of geodesic on given surface pass-
ing through the centre of a circle. However, the diameter 
depends on applied metric as the flow of geodesics does. 
Therefore, the shape of the circles researched in the met-
ric spaces depends on the position of the center and the 
radius. The navigable trajectories as great ellipse or great 
circle are the examples of geodesic lines on the spheroid 
and sphere, respectively. The geodesics may look different 
even on the same surface if different metrics are applied. 
The notion of local metric is required to define geodesics 
locally. Thus, changing the metric causes the differences 
in obtained distances. For precise navigational computa-
tions it is of high importance to know the geometric de-
scription of applied model which states the basis for the 
navigational quantities which are generally the distances 
and angles. For instance,  as a number is constant and 
has the same value in each geometry (Euclidean, elliptic, 

Fig. 13. The circular Tissot’s indicatrices of distortion in the 
Lambert conical conformal projection (Snyder, Voxland 1989)
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hyperbolic) it is used in the computations. However, “ ” 
considered as a ratio of the circle’s circumference to its 
diameter, represented by above defined function , may 
range different values, in particular  = 3.1415926535… 
(Kopacz 2010). In non-Euclidean geometry the ratio of 
a circle’s circumference to its diameter may also differ 
from . This does not change the definition of  but it 
does affect many formulae in which the ratio appears. 
The present research also refers to generalization of the 
ratio in the different geometric structures and compares 
the discrepancies between applied models. There are 
over a dozen principal ellipsoids which are still used by 
one or more countries. The different dimensions do not 
only result from varying accuracy in the geodetic meas-
urements but the curvature of geoid is not uniform due 
to irregularities in the gravity field. Thus, it motivates to 
discuss the problem locally on other models of differing 
curvature as well as globally, in particular on spheroid 
and triaxial ellipsoid which guarantee the better accu-
racy of measurement and approximations in the naviga-
tional applications. Such research may also affect other 
than circle-shaped geometric objects as we showed in 
the Euclidean plane in paragraph 3.3. Hence, the bound-
ary conditions of applied geometry ought to be strictly 
determined. This goal may be achieved by investigating 
the geometric properties to see how the basic axioms and 
definitions lead to quite different and often contradictory 
results. Our research may also state for the starting point 
of such research on surfaces of differing curvature, more 
general Riemannian manifolds, the metric and topologi-
cal spaces.
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