Ransac for outlier detection
Abstract
Santrauka. Nūdienos skaitmenine fotogrametrija nagrinėja fotografinių vaizdų, kuriuose gausu duomenų, apdorojimo procedūras, todėl automatiškai rasti geriausia sprendimą ilgai trunka, būtina talpi kompiuterinė atmintis. Atliekant fotonuotraukų sugretinimą (matching), vienas iš pagrindinių uždavinių yra teisingai identifikuoti duomenų elementus. Sprendžiant šį uždavinį, kyla klaidingų duomenų, kurių paprastai yra daug (gali būti daugiau nei 50 %), eliminavimo problema. Tam tikslui turi būti parinkta tinkama duomenų įvertinimo metodika. Analizuojamas statistinis duomenų įvertinimo metodas RANSAC (Random Sample Consensus), skirtas sudarytajam modeliui suderinti su parinktaisiais duomenimis, t. y. šiuo atveju nagrinėjama tiesios linijos, einančios per turima tašku visuma, radimo ypatumai. RANSAC efektyvumui nustatyti atliktas eksperimentas – įvertintos tiesios linijos generavimo procedūros, kai nurodoma minimali tikimybe bei paklaidos dydis (žr. 5 pav., 2 lentele). Eksperimento metu nustatyta, kad teisingo sprendimo tikimybe bus mažesne, jei duomenų modelis bus mažesnis, o matavimu paklaidos didesnes. Tyrimo rezultatai parode, kad net ir esant 80 % klaidingu duomenų (outliers), taikyti RANSAC yra labai efektyvu – įvedus teisingus parametrus, gaunamas optimalus sprendimas. RANSAC taikymo klaidingiems duomenims aptikti, atliekant automatinį vaizdų sugretinimą, galimybių tyrimas turėtų būti tęsiamas ateityje.
Keyword : statistics, uncertainty, probability, parameter estimation, outliers, inliers, matching

This work is licensed under a Creative Commons Attribution 4.0 International License.