Graphene oxide reinforced poly (vinyl alcohol) nanocomposite: fabrication and characterization for thermal and mechanical properties investigations

    Sami Makharza Info
    Maryam Faroun Info
    Mohammad Bawwab Info
    Ibrahim Afaneh Info

Abstract

We reported the fabrication of poly (vinyl alcohol) incorporated with two different sizes of graphene oxide particles. Scanning electron microscopy (SEM) revealed two sizes of graphene oxide, the first size is as prepared GO_300 nm and the second size is 100nm after hard sonication. The alteration in thermal and mechanical properties of PVA/ GO (5, 10, 15, 20%) nanocomposite compering with PVA are mainly due to the uniform dispersion of GO particles in the polymer matrix and huge interfacial interaction between PVA and GO sheets. Differential scanning calorimetry shows obvious changes in thermal characteristics of PVA after mixing with GO particles. The composite samples exhibit a significant finding at different concentrations and size distribution of GO.

First published online 17 April 2020

Keywords:

graphene oxide, tensile strength, stress strain curve, PVA degradation

How to Cite

Makharza, S., Faroun, M., Bawwab, M., & Afaneh, I. (2019). Graphene oxide reinforced poly (vinyl alcohol) nanocomposite: fabrication and characterization for thermal and mechanical properties investigations. Engineering Structures and Technologies, 11(4), 125-129. https://doi.org/10.3846/est.2019.12473

Share

Published in Issue
December 31, 2019
Abstract Views
787

References

Atif, R., Shyha, I., & Inam, F. (2016). Mechanical, thermal, and electrical properties of graphene-epoxy nanocomposites-A review. Polymers, 8(8), 281. https://doi.org/10.3390/polym8080281"> https://doi.org/10.3390/polym8080281

Brodie, B. C. (1859). On the Atomic Weight of Graphite. Philosophical Transactions of the Royal Society of London, 149(12), 249–259. https://doi.org/10.1098/rstl.1859.0013"> https://doi.org/10.1098/rstl.1859.0013

Cheng-An, T., Hao, Z., Fang, W., Hui, Z., Xiaorong, Z., & Jianfang, W. (2017). Mechanical properties of graphene oxide/polyvinyl alcohol composite film. Polymers and Polymer Composites, 25(1), 11–16. https://doi.org/10.1177/096739111702500102"> https://doi.org/10.1177/096739111702500102

Du, J., & Cheng, H.-M. (2012). The Fabrication, properties, and uses of graphene/polymer composites. Macromolecular Chemistry and Physics, 213(10–11), 1060–1077. https://doi.org/10.1002/macp.201200029"> https://doi.org/10.1002/macp.201200029

Gómez-Navarro, C., Burghard, M., & Kern, K. (2008). Elastic properties of chemically derived single graphene sheets. Nano Letters, 8(7), 2045–2049. https://doi.org/10.1021/nl801384y"> https://doi.org/10.1021/nl801384y

Ionita, M., Pandele, A. M., Crica, L., & Pilan, L. (2014). Improving the thermal and mechanical properties of polysulfone by incorporation of graphene oxide. Composites Part B: Engineering, 59, 133–139. https://doi.org/10.1016/j.compositesb.2013.11.018"> https://doi.org/10.1016/j.compositesb.2013.11.018

Kim, H., & Macosko, C. W. (2009). Processing-property relationships of polycarbonate/graphene composites. Polymer, 50(15), 3797–3809. https://doi.org/10.1016/j.polymer.2009.05.038"> https://doi.org/10.1016/j.polymer.2009.05.038

Lee, B. Y., & Kim, Y. C. (2013). Effect of graphene oxide (GO) dispersion on basic properties of polycarbonate/GO composites. International Journal of Digital Content Technology and Its Applications, 7(11), 287–297. https://doi.org/10.4156/jdcta.vol7.issue11.36"> https://doi.org/10.4156/jdcta.vol7.issue11.36

Lee, C., Wei, X., Kysar, J. W., & Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887), 385–388. https://doi.org/10.1126/science.1157996"> https://doi.org/10.1126/science.1157996

Mansor, M. R., Fadzullah, S. H. S. M., Masripan, N. A. B., Omar, G., & Akop, M. Z. (2019). Comparison between functionalized graphene and carbon nanotubes. In Functionalized Graphene Nanocomposites and their Derivatives (pp. 177–204). Elsevier. https://doi.org/10.1016/B978-0-12-814548-7.00009-X"> https://doi.org/10.1016/B978-0-12-814548-7.00009-X

Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, V. I., & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666–669. https://doi.org/10.1126/science.1102896"> https://doi.org/10.1126/science.1102896

Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S. V., & Geim, A. K. (2005). Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 102(30), 10451–10453. https://doi.org/10.1073/pnas.0502848102"> https://doi.org/10.1073/pnas.0502848102

Omar, G., Salim, M. A., Mizah, B. R., Kamarolzaman, A. A., & Nadlene, R. (2019). Electronic applications of functionalized graphene nanocomposites. In Functionalized Graphene Nanocomposites and their Derivatives (pp. 245–263). Elsevier. https://doi.org/10.1016/B978-0-12-814548-7.00012-X"> https://doi.org/10.1016/B978-0-12-814548-7.00012-X

Ou, B., Zhou, Z., Liu, Q., Liao, B., Yi, S., Ou, Y., Zhang, X., & Li, D. (2012). Covalent functionalization of graphene with poly(methyl methacrylate) by atom transfer radical polymerization at room temperature. Polymer Chemistry, 3(10), 2768. https://doi.org/10.1039/c2py20438j"> https://doi.org/10.1039/c2py20438j

Sengupta, R., Bhattacharya, M., Bandyopadhyay, S., & Bhowmick, A. K. (2011). A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Progress in Polymer Science, 36(5), 638–670. https://doi.org/10.1016/j.progpolymsci.2010.11.003"> https://doi.org/10.1016/j.progpolymsci.2010.11.003

Smith, A. T., LaChance, A. M., Zeng, S., Liu, B., & Sun, L. (2019). Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Materials Science, 1(1), 31–47. https://doi.org/10.1016/j.nanoms.2019.02.004"> https://doi.org/10.1016/j.nanoms.2019.02.004

Suk, J. W., Piner, R. D., An, J., & Ruoff, R. S. (2010). Mechanical properties of monolayer graphene oxide. ACS Nano, 4(11), 6557–6564. https://doi.org/10.1021/nn101781v"> https://doi.org/10.1021/nn101781v

Sun, X., Luo, D., Liu, J., & Evans, D. G. (2010). Monodisperse chemically modified graphene obtained by density gradient ultracentrifugal rate separation. ACS Nano, 4(6), 3381–3389. https://doi.org/10.1021/nn1000386"> https://doi.org/10.1021/nn1000386

Xu, Y., Hong, W., Bai, H., Li, C., & Shi, G. (2009). Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon, 47(15), 3538–3543. https://doi.org/10.1016/j.carbon.2009.08.022"> https://doi.org/10.1016/j.carbon.2009.08.022

Xue, G., Zhang, B., Sun, M., Zhang, X., Li, J., Wang, L., & Song, C. (2019). Morphology, thermal and mechanical properties of epoxy adhesives containing well-dispersed graphene oxide. International Journal of Adhesion and Adhesives, 88, 11–18. https://doi.org/10.1016/j.ijadhadh.2018.10.011"> https://doi.org/10.1016/j.ijadhadh.2018.10.011

Yu, Y.-H., Lin, Y.-Y., Lin, C.-H., Chan, C.-C., & Huang, Y.-C. (2014). High-performance polystyrene/graphene-based nanocomposites with excellent anti-corrosion properties. Polymer Chemistry, 5(2), 535. https://doi.org/10.1039/c3py00825h"> https://doi.org/10.1039/c3py00825h

Zhang, P., Ma, L., Fan, F., Zeng, Z., Peng, C., Loya, P. E., Liu, Z., Gong., Y., Zhang, J., Zhang, X., Ajayan., P. N., & Lou, J. (2014). Fracture toughness of graphene. Nature Communications, 5, 1–7. https://doi.org/10.1038/ncomms4782"> https://doi.org/10.1038/ncomms4782

View article in other formats

CrossMark check

CrossMark logo

Published

2019-12-31

Issue

Section

Articles

How to Cite

Makharza, S., Faroun, M., Bawwab, M., & Afaneh, I. (2019). Graphene oxide reinforced poly (vinyl alcohol) nanocomposite: fabrication and characterization for thermal and mechanical properties investigations. Engineering Structures and Technologies, 11(4), 125-129. https://doi.org/10.3846/est.2019.12473

Share