Graphene oxide reinforced poly (vinyl alcohol) nanocomposite: fabrication and characterization for thermal and mechanical properties investigations

    Sami Makharza Affiliation
    ; Maryam Faroun Affiliation
    ; Mohammad Bawwab Affiliation
    ; Ibrahim Afaneh Affiliation


We reported the fabrication of poly (vinyl alcohol) incorporated with two different sizes of graphene oxide particles. Scanning electron microscopy (SEM) revealed two sizes of graphene oxide, the first size is as prepared GO_300 nm and the second size is 100nm after hard sonication. The alteration in thermal and mechanical properties of PVA/ GO (5, 10, 15, 20%) nanocomposite compering with PVA are mainly due to the uniform dispersion of GO particles in the polymer matrix and huge interfacial interaction between PVA and GO sheets. Differential scanning calorimetry shows obvious changes in thermal characteristics of PVA after mixing with GO particles. The composite samples exhibit a significant finding at different concentrations and size distribution of GO.

First published online 17 April 2020

Keyword : graphene oxide, tensile strength, stress strain curve, PVA degradation

How to Cite
Makharza, S., Faroun, M., Bawwab, M., & Afaneh, I. (2019). Graphene oxide reinforced poly (vinyl alcohol) nanocomposite: fabrication and characterization for thermal and mechanical properties investigations. Engineering Structures and Technologies, 11(4), 125-129.
Published in Issue
Dec 31, 2019
Abstract Views
PDF Downloads
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Atif, R., Shyha, I., & Inam, F. (2016). Mechanical, thermal, and electrical properties of graphene-epoxy nanocomposites-A review. Polymers, 8(8), 281.

Brodie, B. C. (1859). On the Atomic Weight of Graphite. Philosophical Transactions of the Royal Society of London, 149(12), 249–259.

Cheng-An, T., Hao, Z., Fang, W., Hui, Z., Xiaorong, Z., & Jianfang, W. (2017). Mechanical properties of graphene oxide/polyvinyl alcohol composite film. Polymers and Polymer Composites, 25(1), 11–16.

Du, J., & Cheng, H.-M. (2012). The Fabrication, properties, and uses of graphene/polymer composites. Macromolecular Chemistry and Physics, 213(10–11), 1060–1077.

Gómez-Navarro, C., Burghard, M., & Kern, K. (2008). Elastic properties of chemically derived single graphene sheets. Nano Letters, 8(7), 2045–2049.

Ionita, M., Pandele, A. M., Crica, L., & Pilan, L. (2014). Improving the thermal and mechanical properties of polysulfone by incorporation of graphene oxide. Composites Part B: Engineering, 59, 133–139.

Kim, H., & Macosko, C. W. (2009). Processing-property relationships of polycarbonate/graphene composites. Polymer, 50(15), 3797–3809.

Lee, B. Y., & Kim, Y. C. (2013). Effect of graphene oxide (GO) dispersion on basic properties of polycarbonate/GO composites. International Journal of Digital Content Technology and Its Applications, 7(11), 287–297.

Lee, C., Wei, X., Kysar, J. W., & Hone, J. (2008). Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science, 321(5887), 385–388.

Mansor, M. R., Fadzullah, S. H. S. M., Masripan, N. A. B., Omar, G., & Akop, M. Z. (2019). Comparison between functionalized graphene and carbon nanotubes. In Functionalized Graphene Nanocomposites and their Derivatives (pp. 177–204). Elsevier.

Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, V. I., & Firsov, A. A. (2004). Electric field effect in atomically thin carbon films. Science, 306(5696), 666–669.

Novoselov, K. S., Jiang, D., Schedin, F., Booth, T. J., Khotkevich, V. V., Morozov, S. V., & Geim, A. K. (2005). Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 102(30), 10451–10453.

Omar, G., Salim, M. A., Mizah, B. R., Kamarolzaman, A. A., & Nadlene, R. (2019). Electronic applications of functionalized graphene nanocomposites. In Functionalized Graphene Nanocomposites and their Derivatives (pp. 245–263). Elsevier.

Ou, B., Zhou, Z., Liu, Q., Liao, B., Yi, S., Ou, Y., Zhang, X., & Li, D. (2012). Covalent functionalization of graphene with poly(methyl methacrylate) by atom transfer radical polymerization at room temperature. Polymer Chemistry, 3(10), 2768.

Sengupta, R., Bhattacharya, M., Bandyopadhyay, S., & Bhowmick, A. K. (2011). A review on the mechanical and electrical properties of graphite and modified graphite reinforced polymer composites. Progress in Polymer Science, 36(5), 638–670.

Smith, A. T., LaChance, A. M., Zeng, S., Liu, B., & Sun, L. (2019). Synthesis, properties, and applications of graphene oxide/reduced graphene oxide and their nanocomposites. Nano Materials Science, 1(1), 31–47.

Suk, J. W., Piner, R. D., An, J., & Ruoff, R. S. (2010). Mechanical properties of monolayer graphene oxide. ACS Nano, 4(11), 6557–6564.

Sun, X., Luo, D., Liu, J., & Evans, D. G. (2010). Monodisperse chemically modified graphene obtained by density gradient ultracentrifugal rate separation. ACS Nano, 4(6), 3381–3389.

Xu, Y., Hong, W., Bai, H., Li, C., & Shi, G. (2009). Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon, 47(15), 3538–3543.

Xue, G., Zhang, B., Sun, M., Zhang, X., Li, J., Wang, L., & Song, C. (2019). Morphology, thermal and mechanical properties of epoxy adhesives containing well-dispersed graphene oxide. International Journal of Adhesion and Adhesives, 88, 11–18.

Yu, Y.-H., Lin, Y.-Y., Lin, C.-H., Chan, C.-C., & Huang, Y.-C. (2014). High-performance polystyrene/graphene-based nanocomposites with excellent anti-corrosion properties. Polymer Chemistry, 5(2), 535.

Zhang, P., Ma, L., Fan, F., Zeng, Z., Peng, C., Loya, P. E., Liu, Z., Gong., Y., Zhang, J., Zhang, X., Ajayan., P. N., & Lou, J. (2014). Fracture toughness of graphene. Nature Communications, 5, 1–7.