A simplified calculation method for symmetrical loading of a single-span composite string steel structure
Abstract
The article presents single-span composite string steel structure. The article discusses the calculation method for the single-span composite string structure when the load is symmetrical, while the string and bottom cable act as absolutely flexible elements. It presents the way the displacements and the shear force in the supports are calculated for the distributed and concentrated loads. Calculations with a pre-tensioned string are provided. The results are compared with the results obtained with the finite element method program. The conclusions present the results obtained.
Keywords:
bridge, symmetrical load, suspended cable, string, nonlinear analysis, hanging road, displacements, innovate structureHow to Cite
Share
License
Copyright (c) 2019 The Author(s). Published by Vilnius Gediminas Technical University.
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Beivydas, E. (2018). Vieno tarpatramio kabamosios kombinuotos styginės konstrukijos skaitinė analizė. Mokslas – Lietuvos ateitis – Science – Future of Lithuania, 10, 1-5. https://doi.org/10.3846/mla.2018.2867"> https://doi.org/10.3846/mla.2018.2867
Chen, Z., Cao, H., Zhu, H., Hu, J., & Li, S. (2014). A simplified structural mechanics model for cable-truss footbridges and its implications for preliminary design. Engineering Structures, 68, 121-133. https://doi.org/10.1016/j.engstruct.2014.02.015"> https://doi.org/10.1016/j.engstruct.2014.02.015
Gimsing, N. J. (1997). Cable supported bridges: concept and design (2nd ed.). Chichester: John Wiley & Sons.
Greco, L., Impollonia, N., & Cuomo, M. (2014). A procedure for the static analysis of cable structures following elastic catenary theory. International Journal of Solids and Structures, 51, 1521-1533. https://doi.org/10.1016/j.ijsolstr.2014.01.001"> https://doi.org/10.1016/j.ijsolstr.2014.01.001
Kmet, S., & Kokorudova, Z. (2009). Non-linear closed form computational model of cable trusses. International Journal of Nonlinear Mechanics 44, 735-744. https://doi.org/10.1016/j.ijnonlinmec.2009.03.004"> https://doi.org/10.1016/j.ijnonlinmec.2009.03.004
Kulbach, V. (1999). Half-span loading of cable structures. Journal of Constructional Steel Research, 49(2), 167-180. https://doi.org/10.1016/S0143-974X(98)00215-6"> https://doi.org/10.1016/S0143-974X(98)00215-6
Linkutė, E. (2015). Iš anksto įtemptų styginių plieno tiltų komponavimas ir elgsenos analizė (magistro darbas). Vilniaus Gedimino technikos universistetas, Vilnius.
Sandovič, G., & Juozapaitis, A. (2012). The analysis of the behaviour of an innovative pedestrian steel bridge. In Procedia Engineering Steel Structures and Bridges 2012: 23rd Czech and Slovak International Conference (Vol. 40). Amsterdam: Elsevier Science Ltd. https://doi.org/10.1016/j.proeng.2012.07.117"> https://doi.org/10.1016/j.proeng.2012.07.117
Schlaich, M., Bogle, A., & Bleicher, A. (2011). Entwerfen und Konstruieren Massivbau. Institut fur Bauingenieurwesen Technische universitat Berlin.
Strasky, J. (2005). Stressribbon and supported cable pedestrian bridges. London: Thomas Telford Ltd. https://doi.org/10.1680/sracspb.32828"> https://doi.org/10.1680/sracspb.32828
Yunitskiy, A. (2006). String Transport in questions and answers. Moscow, Russia.
Yunitskiy, A. E. (2019). Strunnye transportnye sistemy: na Zemle i v Kosmose. Silakrogs: PNB print.
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2019 The Author(s). Published by Vilnius Gediminas Technical University.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.