A kinematic approach to segmented-trajectory generation for the total loss of thrust emergency
DOI: https://doi.org/10.3846/16487788.2015.1104847Abstract
Contemporary twin-engine airliners are more vulnerable to total loss of thrust than yesterday‘s three and four engine airliners, due to reduced engine redundancy. In the event of a total loss of thrust, flight crews have only one chance for landing, because the aircraft cannot gain altitude. Therefore, there is a pressing need to explore the idea of an engines-out landing trajectory optimization for commercial jets. A few past studies addressed this safety issue for general aviation aircraft and fighter jets but not commercial jets, primarily because the essential aircraft-specific aerodynamic data are not publicly available. To fill in this gap, this study adopts a kinematic approach to aircraft trajectory optimization. Unlike conventional trajectory optimization methods, the kinematic algorithm requires minimal amount of aircraft-specific aerodynamic data that can be effortlessly collected in a full flight simulator. The paper describes the kinematic algorithm and applies it to a realistic bird strike scenario. Flight simulation tests are conducted in a full flight simulator to verify the accuracy of the algorithm. The results demonstrate that the algorithm can compute the optimum trajectory with a less than 3.0 percent error. Since the algorithm is accurate and computationally-undemanding, it is promising for real-world applications.
Keywords:
aircraft, commercial, dual-engine failure, glide, jetliner, performance, power-off, powerless, engines- out, trajectory optimization, simulation, total loss of powerHow to Cite
Share
License
Copyright (c) 2015 The Author(s). Published by Vilnius Gediminas Technical University.
This work is licensed under a Creative Commons Attribution 4.0 International License.
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2015 The Author(s). Published by Vilnius Gediminas Technical University.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.