Toward a lightweight high-speed fin: structural and flutter analysis for thickness reduction
DOI: https://doi.org/10.3846/aviation.2025.25310Abstract
Reducing the mass of supersonic aerodynamic surfaces is a critical challenge in the development of high-speed rockets to further their potential range. This study presents the redesign of a supersonic fin with the primary objective of reducing its thickness from 25 mm. Two designs are investigated, with thicknesses of 10 and 12 mm, respectively, to ensure structural integrity under extreme flight conditions. A comprehensive computational approach is employed, combining static structural analysis, modal analysis, and aeroelastic analysis. Modal analysis is validated through an experimental method using a hammer impulse test for modal frequencies. The 10 mm rocket fin cannot withstand the static load simulated under the flight condition of 15-degree angle of attack, maximum operational flight speed of Mach 3.27, and air density at sea level. The 12 mm thick fin meets the requirements and demonstrates a flutter speed of Mach 11, significantly exceeding the required flutter speed of Mach 3.99. This research highlights the feasibility of substantial weight reduction in supersonic fins without compromising stability, offering a pathway for future advancements in lightweight, high-speed control surfaces.
Keywords:
aeroelasticity, modal analysis, finite element analysis, structural design, hammer impact test, supersonic finHow to Cite
Share
License
Copyright (c) 2025 The Author(s). Published by Vilnius Gediminas Technical University.

This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Abou-Amer, S., Dahshan, A., & El Nomrossy, M. (2007). Nonlinear panel flutter analysis at high supersonic speed. Mansoura Engineering Journal, 32(2). https://doi.org/10.21608/bfemu.2020.128541
Andika, M. G., Moelyadi, M. A., Sasongko, R. A., & Hadi, B. K. (2023a). Finite element assisting for effective ground vibration test planning on very flexible aircraft. AIP Conference Proceedings, 2941(1), Article 020044. https://doi.org/10.1063/5.0181451
Andika, M. G., Moelyadi, M. A., Sasongko, R. A., & Hadi, B. K. (2023b). Pretest planning approach for optimal modal testing on high aspect ratio wing structure. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 47, 1109–1120. https://doi.org/10.1007/s40997-022-00564-3
Bahari, A. R., Yunus, M. A., Rani, M. N. A., Mirza, W. I. I. W. I., Shah, M. A. S. A., & Yahya, Z. (2021). Finite element modelling and updating of a thin plate structure using normal mode analysis. IOP Conference Series: Materials Science and Engineering, 1062(1), Article 012059. https://doi.org/10.1088/1757-899X/1062/1/012059
Bramsiepe, K., Voß, A., & Klimmek, T. (2020). Design and sizing of an aeroelastic composite model for a flying wing configuration with maneuver, gust, and landing loads. CEAS Aeronautical Journal, 11, 677–691. https://doi.org/10.1007/s13272-020-00446-x
Cavallo, T., Zappino, E., & Carrera, E. (2017). Component-wise vibration analysis of stiffened plates accounting for stiffener modes. CEAS Aeronautical Journal, 8, 385–412. https://doi.org/10.1007/s13272-017-0244-5
Cestino, E., Frulla, G., Spina, M., Catelani, D., & Linari, M. (2019). Numerical simulation and experimental validation of slender wings flutter behaviour. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 233(16). https://doi.org/10.1177/0954410019879820
Chen, P.-C., & Liu, D. D. (1985). A harmonic gradient method for unsteady supersonic flow calculations. Journal of Aircraft, 22(5). https://doi.org/10.2514/3.45134
Dinulović, M., Rašuo, B., Slavković, A., & Zajić, G. (2022). Flutter analysis of tapered composite fins: Analysis and experiment. FME Transactions, 50(3), 576–585. https://doi.org/10.5937/fme2203576D
Dowell, E. H. (1972). Panel flutter. In NASA Space Vehicle Design Criteria (Structures). National Aeronautics and Space Administration.
Firouz-Abadi, R. D., & Alavi, S. M. (2012). Effect of thickness and angle-of-attack on the aeroelastic stability of supersonic fins. The Aeronautical Journal, 116(1182). https://doi.org/10.1017/S0001924000007272
Hancock, G. J., Wright, J. R., & Simpson, A. (1985). On the teaching of the principles of wing flexure-torsion flutter. The Aeronautical Journal, 89(888). https://doi.org/10.1017/S0001924000015050
He, C., Liu, Y., Dong, J., Wang, Q., Wagner, D., & Bathias, C. (2015). Fatigue crack initiation behaviors throughout friction stir welded joints in AA7075-T6 in ultrasonic fatigue. International Journal of Fatigue, 81, 171–178. https://doi.org/10.1016/j.ijfatigue.2015.07.012
Hexagon AB. (2021). MSC FlightLoads 2021.4 user’s guide. https://help-be.hexagonmi.com/bundle/MSC_FlightLoads_2021.4_User_Guide/raw/resource/enus/MSC_FlightLoads_2021.4_User_Guide.pdf
Jones, W. P. (1948). Supersonic theory for oscillating wings of any plan form. British Aeronautical Research Council R&M 2655.
Ju, Q., & Qin, S. (2009). New improved g method for flutter solution. Journal of Aircraft, 46(6). https://doi.org/10.2514/1.46328
Liu, D. D., Yao, Z. X., Sarhaddi, D., & Chavez, F. (1994). Piston theory revisited and further applications (ICAS Paper 94-2.8.4). ICAS.
MSC Software Corporation. (2017). Dynamic analysis user’s guide. https://simcompanion.hexagon.com/customers/s/article/msc-nastran-2018-dynamic-analysis-user-s-guide-doc11514
National Aeronautics and Space Administration. (2024). Loads and structural dynamics requirements for spaceflight hardware. NASA.
Qaumi, T., & Hashemi, S. (2023). Experimental and numerical modal analysis of a composite rocket structure. Aerospace, 10(10), Article 867. https://doi.org/10.3390/aerospace10100867
Qiu, J., & Liu, C. (2021). Verification and validation of supersonic flutter of rudder model for experiment. In M. S. G. Tsuzuki, R. Y. Takimoto, A. K. Sato, Saka, T., Barari, A., Rahman, R. O. A., & Hung, Y.-T. (Eds.), Engineering problems – uncertainties, constraints and optimization techniques. IntechOpen. https://doi.org/10.5772/intechopen.98384
Rayer, S. (2007). Population forecast accuracy: Does the choice of summary measure of error matter? Population Research and Policy Review, 26, 163–184. https://doi.org/10.1007/s11113-007-9030-0
Reynolds, P., & Pavic, A. (2000). Impulse hammer versus shaker excitation for the modal testing of building floors. Experimental Techniques, 24(3), 39–44. https://doi.org/10.1111/j.1747-1567.2000.tb00911.x
Rodden, W., Harder, R., & Bellinger, E. (1979). Aeroelastic addition to NASTRAN (NASA CR-3094). NASA.
Shaji, B., V, K., A, S., & V, J. (2017). Structural analysis on Al 7075 T-651 shaft. Journal of Chemical and Pharmaceutical Sciences, 10(1), 646–648.
Spain, C. V., Zeiler, T., & Bullock, E., Hodge, J. (1995). A flutter investigation of all-moveable NASP-like wings at hypersonic speeds. In 34th Structures, Structural Dynamics and Materials Conference. Aerospace Research Central. https://doi.org/10.2514/6.1993-1315
Syamsuar, S., Sampurno, B., Mahasti, K. M., Pratama, M. B. S., Sasongko, T. W., Kartika, N., Adityo, S., Ivan, M., & Eskayudha, D. B. (2018). Half wing N219 aircraft model clean configuration for flutter test on low speed wind tunnel. Journal of Physics: Conference Series, 1005(1), Article 012040. https://doi.org/10.1088/1742-6596/1005/1/012040
The Aluminum Association, Inc. (2009). Aluminum standards and data 2009. The Aluminum Association, Inc.
Wang, G., Xie, C., Liu, C., & An, C. (2024). Hypersonic flutter analysis based on three-dimensional local piston theory. In International Forum on Aeroelastiscity and Structural Dynamis (IFASD 2024). The Hague, The Netherlands.
Xuan, C., Han, J., Zhang, B., Yun, H., & Chen, X. (2019). Hypersonic flutter and flutter suppression system of a wind tunnel model. Chinese Journal of Aeronautics, 32(9), 2121–2132. https://doi.org/10.1016/j.cja.2019.02.009
Zhang, W., Lv, Z., Diwu, Q., & Zhong, H. (2019). A flutter prediction method with low cost and low risk from test data. Aerospace Science and Technology, 86, 542–557. https://doi.org/10.1016/j.ast.2019.01.043
Zhang, Z., Zhang, W., Zhai, Z. J., & Chen, Q. Y. (2007). Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD: Part 2 – comparison with experimental data from literature. HVAC&R Research, 13(6), 871–886. https://doi.org/10.1080/10789669.2007.10391460
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2025 The Author(s). Published by Vilnius Gediminas Technical University.
License

This work is licensed under a Creative Commons Attribution 4.0 International License.