Toward a lightweight high-speed fin: structural and flutter analysis for thickness reduction

    Firza Fadlan Ekadj Info
    Wahyu Nirbito Info
    Fadilah Hasim Info
    Matza Gusto Andika Info
    Idris Eko Putro Info
    Lilis Mariani Info
DOI: https://doi.org/10.3846/aviation.2025.25310

Abstract

Reducing the mass of supersonic aerodynamic surfaces is a critical challenge in the development of high-speed rockets to further their potential range. This study presents the redesign of a supersonic fin with the primary objective of reducing its thickness from 25 mm. Two designs are investigated, with thicknesses of 10 and 12 mm, respectively, to ensure structural integrity under extreme flight conditions. A comprehensive computational approach is employed, combining static structural analysis, modal analysis, and aeroelastic analysis. Modal analysis is validated through an experimental method using a hammer impulse test for modal frequencies. The 10 mm rocket fin cannot withstand the static load simulated under the flight condition of 15-degree angle of attack, maximum operational flight speed of Mach 3.27, and air density at sea level. The 12 mm thick fin meets the requirements and demonstrates a flutter speed of Mach 11, significantly exceeding the required flutter speed of Mach 3.99. This research highlights the feasibility of substantial weight reduction in supersonic fins without compromising stability, offering a pathway for future advancements in lightweight, high-speed control surfaces.

Keywords:

aeroelasticity, modal analysis, finite element analysis, structural design, hammer impact test, supersonic fin

How to Cite

Ekadj, F. F., Nirbito, W., Hasim, F., Andika, M. G., Putro, I. E., & Mariani, L. (2025). Toward a lightweight high-speed fin: structural and flutter analysis for thickness reduction. Aviation, 29(4), 261–268. https://doi.org/10.3846/aviation.2025.25310

Share

Published in Issue
December 19, 2025
Abstract Views
9

References

Abou-Amer, S., Dahshan, A., & El Nomrossy, M. (2007). Nonlinear panel flutter analysis at high supersonic speed. Mansoura Engineering Journal, 32(2). https://doi.org/10.21608/bfemu.2020.128541

Andika, M. G., Moelyadi, M. A., Sasongko, R. A., & Hadi, B. K. (2023a). Finite element assisting for effective ground vibration test planning on very flexible aircraft. AIP Conference Proceedings, 2941(1), Article 020044. https://doi.org/10.1063/5.0181451

Andika, M. G., Moelyadi, M. A., Sasongko, R. A., & Hadi, B. K. (2023b). Pretest planning approach for optimal modal testing on high aspect ratio wing structure. Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 47, 1109–1120. https://doi.org/10.1007/s40997-022-00564-3

Bahari, A. R., Yunus, M. A., Rani, M. N. A., Mirza, W. I. I. W. I., Shah, M. A. S. A., & Yahya, Z. (2021). Finite element modelling and updating of a thin plate structure using normal mode analysis. IOP Conference Series: Materials Science and Engineering, 1062(1), Article 012059. https://doi.org/10.1088/1757-899X/1062/1/012059

Bramsiepe, K., Voß, A., & Klimmek, T. (2020). Design and sizing of an aeroelastic composite model for a flying wing configuration with maneuver, gust, and landing loads. CEAS Aeronautical Journal, 11, 677–691. https://doi.org/10.1007/s13272-020-00446-x

Cavallo, T., Zappino, E., & Carrera, E. (2017). Component-wise vibration analysis of stiffened plates accounting for stiffener modes. CEAS Aeronautical Journal, 8, 385–412. https://doi.org/10.1007/s13272-017-0244-5

Cestino, E., Frulla, G., Spina, M., Catelani, D., & Linari, M. (2019). Numerical simulation and experimental validation of slender wings flutter behaviour. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 233(16). https://doi.org/10.1177/0954410019879820

Chen, P.-C., & Liu, D. D. (1985). A harmonic gradient method for unsteady supersonic flow calculations. Journal of Aircraft, 22(5). https://doi.org/10.2514/3.45134

Dinulović, M., Rašuo, B., Slavković, A., & Zajić, G. (2022). Flutter analysis of tapered composite fins: Analysis and experiment. FME Transactions, 50(3), 576–585. https://doi.org/10.5937/fme2203576D

Dowell, E. H. (1972). Panel flutter. In NASA Space Vehicle Design Criteria (Structures). National Aeronautics and Space Administration.

Firouz-Abadi, R. D., & Alavi, S. M. (2012). Effect of thickness and angle-of-attack on the aeroelastic stability of supersonic fins. The Aeronautical Journal, 116(1182). https://doi.org/10.1017/S0001924000007272

Hancock, G. J., Wright, J. R., & Simpson, A. (1985). On the teaching of the principles of wing flexure-torsion flutter. The Aeronautical Journal, 89(888). https://doi.org/10.1017/S0001924000015050

He, C., Liu, Y., Dong, J., Wang, Q., Wagner, D., & Bathias, C. (2015). Fatigue crack initiation behaviors throughout friction stir welded joints in AA7075-T6 in ultrasonic fatigue. International Journal of Fatigue, 81, 171–178. https://doi.org/10.1016/j.ijfatigue.2015.07.012

Hexagon AB. (2021). MSC FlightLoads 2021.4 user’s guide. https://help-be.hexagonmi.com/bundle/MSC_FlightLoads_2021.4_User_Guide/raw/resource/enus/MSC_FlightLoads_2021.4_User_Guide.pdf

Jones, W. P. (1948). Supersonic theory for oscillating wings of any plan form. British Aeronautical Research Council R&M 2655.

Ju, Q., & Qin, S. (2009). New improved g method for flutter solution. Journal of Aircraft, 46(6). https://doi.org/10.2514/1.46328

Liu, D. D., Yao, Z. X., Sarhaddi, D., & Chavez, F. (1994). Piston theory revisited and further applications (ICAS Paper 94-2.8.4). ICAS.

MSC Software Corporation. (2017). Dynamic analysis user’s guide. https://simcompanion.hexagon.com/customers/s/article/msc-nastran-2018-dynamic-analysis-user-s-guide-doc11514

National Aeronautics and Space Administration. (2024). Loads and structural dynamics requirements for spaceflight hardware. NASA.

Qaumi, T., & Hashemi, S. (2023). Experimental and numerical modal analysis of a composite rocket structure. Aerospace, 10(10), Article 867. https://doi.org/10.3390/aerospace10100867

Qiu, J., & Liu, C. (2021). Verification and validation of supersonic flutter of rudder model for experiment. In M. S. G. Tsuzuki, R. Y. Takimoto, A. K. Sato, Saka, T., Barari, A., Rahman, R. O. A., & Hung, Y.-T. (Eds.), Engineering problems – uncertainties, constraints and optimization techniques. IntechOpen. https://doi.org/10.5772/intechopen.98384

Rayer, S. (2007). Population forecast accuracy: Does the choice of summary measure of error matter? Population Research and Policy Review, 26, 163–184. https://doi.org/10.1007/s11113-007-9030-0

Reynolds, P., & Pavic, A. (2000). Impulse hammer versus shaker excitation for the modal testing of building floors. Experimental Techniques, 24(3), 39–44. https://doi.org/10.1111/j.1747-1567.2000.tb00911.x

Rodden, W., Harder, R., & Bellinger, E. (1979). Aeroelastic addition to NASTRAN (NASA CR-3094). NASA.

Shaji, B., V, K., A, S., & V, J. (2017). Structural analysis on Al 7075 T-651 shaft. Journal of Chemical and Pharmaceutical Sciences, 10(1), 646–648.

Spain, C. V., Zeiler, T., & Bullock, E., Hodge, J. (1995). A flutter investigation of all-moveable NASP-like wings at hypersonic speeds. In 34th Structures, Structural Dynamics and Materials Conference. Aerospace Research Central. https://doi.org/10.2514/6.1993-1315

Syamsuar, S., Sampurno, B., Mahasti, K. M., Pratama, M. B. S., Sasongko, T. W., Kartika, N., Adityo, S., Ivan, M., & Eskayudha, D. B. (2018). Half wing N219 aircraft model clean configuration for flutter test on low speed wind tunnel. Journal of Physics: Conference Series, 1005(1), Article 012040. https://doi.org/10.1088/1742-6596/1005/1/012040

The Aluminum Association, Inc. (2009). Aluminum standards and data 2009. The Aluminum Association, Inc.

Wang, G., Xie, C., Liu, C., & An, C. (2024). Hypersonic flutter analysis based on three-dimensional local piston theory. In International Forum on Aeroelastiscity and Structural Dynamis (IFASD 2024). The Hague, The Netherlands.

Xuan, C., Han, J., Zhang, B., Yun, H., & Chen, X. (2019). Hypersonic flutter and flutter suppression system of a wind tunnel model. Chinese Journal of Aeronautics, 32(9), 2121–2132. https://doi.org/10.1016/j.cja.2019.02.009

Zhang, W., Lv, Z., Diwu, Q., & Zhong, H. (2019). A flutter prediction method with low cost and low risk from test data. Aerospace Science and Technology, 86, 542–557. https://doi.org/10.1016/j.ast.2019.01.043

Zhang, Z., Zhang, W., Zhai, Z. J., & Chen, Q. Y. (2007). Evaluation of various turbulence models in predicting airflow and turbulence in enclosed environments by CFD: Part 2 – comparison with experimental data from literature. HVAC&R Research, 13(6), 871–886. https://doi.org/10.1080/10789669.2007.10391460

View article in other formats

CrossMark check

CrossMark logo

Published

2025-12-19

Issue

Section

Articles

How to Cite

Ekadj, F. F., Nirbito, W., Hasim, F., Andika, M. G., Putro, I. E., & Mariani, L. (2025). Toward a lightweight high-speed fin: structural and flutter analysis for thickness reduction. Aviation, 29(4), 261–268. https://doi.org/10.3846/aviation.2025.25310

Share