Fatigue indicators for metal structures: from aircraft to bridges
DOI: https://doi.org/10.3846/aviation.2025.24532Abstract
The papers focus on a fatigue monitoring method for two types of engineering structures: (a) aircraft and (b) steel bridges. However, the potential application of this new approach extends beyond these examples. It is demonstrated that, despite advancements in stress-strain analysis, improvements in fatigue life prediction methods, and progress in contemporary non-destructive inspection techniques, unexpected failures of metal structures still occur. This paper outlines the evolution of Fatigue Indicators for Metal Structures, progressing from conceptual development to a family of indicators capable of monitoring fatigue damage in key structural components. These include aircraft parts made of aluminum alloys and load-bearing elements of steel bridges. All the indicators discussed share a unifying concept: the metal surface subjected to cyclic loading reflects accumulated fatigue damage. The primary parameter used to assess this damage is the intensity of the surface deformation relief (extrusion/intrusion patterns), measured using a computer-aided optical method. The conceptual design of Fatigue Indicators for both uniaxial and biaxial fatigue is explored. The required sensitivity level of the indicators is achieved through the redistribution of the strains by geometric optimization, which is carried out using Finite Element Analysis.
Keywords:
aircraft, metal fatigue, alclad alloys, single crystals, fatigue indicator, steel bridgesHow to Cite
Share
License
Copyright (c) 2025 The Author(s). Published by Vilnius Gediminas Technical University.
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
American Association of State Highway and Transportation Officials. (2024). AASHTO LRFD bridge design specifications (10th ed.). AASHTO.
Aldeeb, T., & Abduelmula, M. A. (2018). Fatigue strength of S275 mild steel under cyclic loading. World Academy of Science, Engineering and Technology International Journal of Materials and Metallurgical Engineering, 12(10), 564–570.
ASM Aerospace Specification Metals Inc. (n.d.). 2024-T3 aluminum alloy [Data sheet]. Retrieved May 12, 2025, from http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=ma2024t3
Aviation Safety Network. (2020). ASN aviation safety database. https://aviationsafety.net/database/
Bathias, C. (1999). There is no infinite fatigue life in metallic materials. Fatigue & Fracture of Engineering Materials & Structures, 22(7), 559–565. https://doi.org/10.1046/j.1460-2695.1999.00183.x
Bjørheim, F., Siriwardane, S. C., & Pavlou, D. (2022). A review of fatigue damage detection and measurement techniques. International Journal of Fatigue, 154, Article 106556. https://doi.org/10.1016/j.ijfatigue.2021.106556
Coffin, L. F. (1954). A study of the effects of cyclic thermal stresses on a ductile metal. Transactions of the American Society of Mechanical Engineers, 76(6), 931–950. https://doi.org/10.1115/1.4015020
Dolati, S., Caluk, N., & Mehrabi, A. (2021). Non-destructive testing applications for steel bridges. Applied Sciences, 11(20), Article 9757. https://doi.org/10.3390/app11209757
Drumond, G., Roudet, F., Pasqualino, I., Pinheiro, B., Chicot, D., & Decoopman, X. (2017, August 28–September 1). High-cycle fatigue damage evaluation of steel pipelines based on micro-hardness changes during cyclic loads. In Proceedings of the 23rd Congrès Français de Mécanique (pp. 1–8). Université de Lille. https://doi.org/10.1115/OMAE2017-62677
Eifler, D., Smaga, M., & Klein, M. (2016). Fatigue monitoring of metals based on mechanical hysteresis, electromagnetic ultrasonic, electrical resistance and temperature measurements. Mechanical Engineering Journal, 3(6), Article 16–00303. https://doi.org/10.1299/mej.16-00303
Eurocode Applied. (2017, October 9). Eurocode 3 – table of design material properties for structural steel. https://eurocodeapplied.com/design/en1993/steel-design-properties
Fan, C., Da, L., Wang, K., Song, S., & Chen, H. (2023). Fatigue tests and failure mechanism of rib-to-deck welded joints in steel bridges. Sustainability, 15(3), Article 2108. https://doi.org/10.3390/su15032108
Goranson, U. G. (1998). Fatigue issues in aircraft maintenance and repairs. International Journal of Fatigue, 20(6), 413–431. https://doi.org/10.1016/S0142-1123(97)00029-7
Gordienko, G., Zasimchuk, E., & Karuskevich, M. (1995). Forecasting the critical state of a deformed crystal by analysis of smart defect structure: Fractal characteristics and percolation critical indexes. In Sensors and their Applications VII (pp. 387–392). Institute of Physics Publishing.
Gkoumas, K., Marques dos Santos, F. L., van Balen, M., Tsakalidis, A., Ortega Hortelano, A., Grosso, M., Haq, G., & Pekár, F. (2019). Research and innovation in bridge maintenance, inspection and monitoring – A European perspective based on TRIMIS (EUR 29650 EN). Publications Office of the European Union. https://doi.org/10.2760/719505
Haghani, R., Al-Emrani, M., & Heshmati, M. (2012). Fatigue-prone details in steel bridges. Buildings, 2(4), 456–476. https://doi.org/10.3390/buildings2040456
Ignatovich, S. R., Menou, A., Karuskevich, M. V., & Maruschak, P. O. (2013). Fatigue damage and sensor development for aircraft structural health monitoring. Theoretical and Applied Fracture Mechanics, 65, 23–27. https://doi.org/10.1016/j.tafmec.2013.05.004
Integrated Structural Health Monitoring. (n.d.). Development of self-sustained wireless integrated structural health systems for highway bridges. Intelligent Structural Health Monitoring Laboratory, University of Maryland. Retrieved May 12, 2025, from http://ishm.umd.edu/about/background.html
Karuskevich, M., Karuskevich, O., Maslak, T., & Schepak, S. (2012). Extrusion/intrusion structures as quantitative indicators of accumulated fatigue damage. International Journal of Fatigue, 39, 116–121. https://doi.org/10.1016/j.ijfatigue.2011.02.007
Karuskevich, M., Maslak, T., Gavrylov, I., Pejkowski, Ł., & Seyda, J. (2022). Structural health monitoring for light aircraft. Procedia Structural Integrity, 36, 92–99. https://doi.org/10.1016/j.prostr.2022.01.008
Karuskevich, M., Maslak, T., Vlasenko, Y., & Pejkowski, Ł. (2024). Biaxial fatigue indicator. Procedia Structural Integrity, 59, 642–649. https://doi.org/10.1016/j.prostr.2024.04.091
Kucharczyk, P., Rizos, A., Münstermann, S., & Bleck, W. (2012). Estimation of the endurance fatigue limit for structural steel in load-increasing tests at low temperature. Fatigue & Fracture of Engineering Materials & Structures, 35(7), 628–637. https://doi.org/10.1111/j.1460-2695.2011.01656.x
Leonetti, D., Kinoshita, K., Takai, Y., & Nussbaumer, A. (2024). Fatigue behavior of transverse attachments under constant and variable amplitude loading from a Swiss motorway bridge. International Journal of Fatigue, 178, Article 108003. https://doi.org/10.1016/j.ijfatigue.2023.108003
Manson, S. S. (1953). Behavior of materials under conditions of thermal stress (NASA Technical Note, 2933). NASA.
Miner, M. A. (1945). Cumulative damage in fatigue. Journal of Applied Mechanics, 12(3), A159–A164. https://doi.org/10.1115/1.4009458
Maulana, Y., Wibowo, E., & Marlina, L. (2024). Optimization of structural health monitoring for steel bridges using wireless sensor networks and machine-learning algorithms. International Journal of Mechanical, Electrical and Civil Engineering, 1(2), 11–16. https://doi.org/10.61132/ijmecie.v1i2.65
Nobile, R., & Saponaro, A. (2021). Real-time monitoring of fatigue damage by electrical resistance change method. International Journal of Fatigue, 151, Article 106404. https://doi.org/10.1016/j.ijfatigue.2021.106404
Pangborn, R. N., & Zamrik, S. Y. (1991). Fatigue damage assessment by X-ray diffraction and nondestructive life-assessment methodology. In C. O. Ruud, J. F. Bussière, & R. E. Green (Eds.), Nondestructive characterization of materials IV (pp. 351–362). Springer. https://doi.org/10.1007/978-1-4899-0670-0_31
Palmgren, A. (1924). The service life of ball bearings. Process Engineering, 68, 339–341.
Reference Metal. (n.d.). Company profile. Retrieved May 12, 2025, from https://www.referansmetal.com/hakkimizda.php
Samim, M., Sekiya, H., & Hirano, S. (2023). Evaluation of fatigue damage in steel girder bridges using displacement influence lines. Structures, 53, 1160–1171. https://doi.org/10.1016/j.istruc.2023.04.126
Schijve, J. (2005). Statistical distribution functions and fatigue of structures. International Journal of Fatigue, 27(9), 1031–1039. https://doi.org/10.1016/j.ijfatigue.2005.03.001
SteelConstruction.info. (n.d.). Bridges. Retrieved May 12, 2025, from https://steelconstruction.info/Bridges
Tabsh, S. W., & Nowak, A. S. (1991). Reliability of highway girder bridges. Journal of Structural Engineering, 117(8), 2372–2388. https://doi.org/10.1061/(ASCE)0733-9445(1991)117:8(2372)
The European Union. (2006). Eurocode 3: Design of steel structures – Part 2: Steel bridges (EN 1993-2). European Committee for Standardization.
United Aluminum. (n.d.). 1050 aluminum alloy [Technical data]. Retrieved May 12, 2025, from https://unitedaluminum.com/1050-aluminum-alloy/
Velling, A. (2019, 7 January). Structural steels S235, S275, S355, S420 and their properties. Fractory Blog. https://fractory.com/structural-steels-s235-s275-s355-s420-and-their-properties/
Wadee, M. A. (1999). Experimental evaluation of interactive buckle localization in compression sandwich panels. Journal of Sandwich Structures & Materials, 1(3), 230–254. https://doi.org/10.1177/109963629900100304
Westmoreland Mechanical Testing & Research Inc. (n.d.). History of fatigue testing. Retrieved May 12, 2025, from https://www.wmtr.com/History_Of_Fatigue_Testing.html
Zasimchuk, E. E., Radchenko, A. I., & Karuskevich, M. V. (1992). Single-crystals as an indicator of fatigue damage. Fatigue & Fracture of Engineering Materials & Structures, 15(12), 1281–1283. https://doi.org/10.1111/j.1460-2695.1992.tb01263.x
Zhan, J., Zhang, G., Ma, J. F., Liu, Z., & Song, J. (2021). Determination of the resonance fatigue dislocation density of a 2024 aluminum alloy by X-ray diffraction. Strength of Materials, 53(2), 239–247. https://doi.org/10.1007/s11223-021-00323-w
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2025 The Author(s). Published by Vilnius Gediminas Technical University.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.