Data-based flight optimization model for scheduling: noise management approach

DOI: https://doi.org/10.3846/aviation.2025.23577

Abstract

Civil aviation noise remains a key challenge that limits the industry’s growth. With the rise in global air traffic, aviation noise pollution is becoming an increasingly pressing concern. This research develops a data-driven flight optimization model to mitigate noise levels at Vilnius Airport. The research is conducted in three stages: first, existing noise reduction strategies and the potential of scheduling optimization tools are reviewed. Next, EUROCONTROL’s integrated aircraft noise and emissions modelling platform is used to assess noise levels for each flight operation under relevant atmospheric conditions. Finally, a flight schedule optimization model is developed by considering key variables, constraints, and assumptions affecting airport noise, followed by an evaluation of its performance and efficiency. The findings suggest that effective noise management requires a comprehensive approach, integrating operational adjustments with a detailed understanding of industry factors.

Keywords:

noise assessment, flight schedule optimization, data-driven model, genetic algorithm, 4D trajectories, civil aviation

How to Cite

Šitkauskaitė, A., & Leonavičiūtė, V. (2025). Data-based flight optimization model for scheduling: noise management approach. Aviation, 29(2), 61–70. https://doi.org/10.3846/aviation.2025.23577

Share

Published in Issue
May 15, 2025
Abstract Views
103

References

Al-Harthy, I., Amoatey, P., Al-Mamun, A., Alabri, Z., & Baawain, M. S. (2021). Assessment of noise levels and induced annoyance in nearby residential areas of an airport region in Oman. Environmental Science and Pollution Research, 28(33), 45596–45608. https://doi.org/10.1007/s11356-021-13891-w> https://doi.org/10.1007/s11356-021-13891-w

Alonso, G., Benito, A., & Boto, L. (2017). The efficiency of noise mitigation measures at European airports. Transportation Research Procedia, 25, 103–135. https://doi.org/10.1016/j.trpro.2017.05.385> https://doi.org/10.1016/j.trpro.2017.05.385

European Union Aviation Safety Agency. (2025). Aircraft environmental standards. https://www.easa.europa.eu/en/domains/environment/eaer/technology-and-design/aircraft-environmental-standards> https://www.easa.europa.eu/en/domains/environment/eaer/technology-and-design/aircraft-environmental-standards

European Civil Aviation Conference. (2016). ECAC.CEAC Doc 29 4th edition: Report on standard method of computing noise contours around civil airports. https://www.ecac-ceac.org/images/documents/ECAC-Doc_29_4th_edition_Dec_2016_Volume_2.pdf> https://www.ecac-ceac.org/images/documents/ECAC-Doc_29_4th_edition_Dec_2016_Volume_2.pdf

Ehmer, H., Classen, A. B., & Müller, L. (2023). The effectiveness of regulatory noise mitigation measures. Transportation Research Procedia, 75, 23–32. https://doi.org/10.1016/j.trpro.2023.12.004> https://doi.org/10.1016/j.trpro.2023.12.004

EUROCONTROL. (2025). Integrated aircraft noise and emissions modelling platform. https://www.eurocontrol.int/platform/integrated-aircraft-noise-and-emissions-modelling-platform> https://www.eurocontrol.int/platform/integrated-aircraft-noise-and-emissions-modelling-platform

Fajersztajn, L., Guimarães, M. T., Duim, E., Silva, T. G. V. da, Okamura, M. N., Brandão, S. L. B., Ribeiro, A. E., Naud, L. M., O’Sullivan, S., Saldiva, P. H. N., & Cardoso, M. R. A. (2019). Health effects of pollution on the residential population near a Brazilian airport: A perspective based on literature review. Journal of Transport & Health, 14, Article 100565. https://doi.org/10.1016/j.jth.2019.05.004> https://doi.org/10.1016/j.jth.2019.05.004

Feng, H., Hu, R., Wang, D., Zhang, J., & Wu, C. (2023). Bi-objective airport slot scheduling considering scheduling efficiency and noise abatement. Transportation Research Part D: Transport and Environment, 115, Article 103591. https://doi.org/10.1016/j.trd.2022.103591> https://doi.org/10.1016/j.trd.2022.103591

Frair, L. (1984). Airport noise modelling and aircraft scheduling so as to minimize community annoyance. Applied Mathematical Modelling, 8(4), 271–281. https://doi.org/10.1016/0307-904X(84)90162-8> https://doi.org/10.1016/0307-904X(84)90162-8

Grampella, M., Lo, P. L., Martini, G., & Scotti, D. (2017). The impact of technology progress on aviation noise and emissions. Transportation Research Part A: Policy and Practice, 103, 525–540. https://doi.org/10.1016/j.tra.2017.05.022> https://doi.org/10.1016/j.tra.2017.05.022

Guedan‐Pecker, F., & Ramirez‐Atencia, C. (2024). Airport take‐off and landing optimization through genetic algorithms. Expert Systems, 41(8). https://doi.org/10.1111/exsy.13565> https://doi.org/10.1111/exsy.13565

Heyes, G., Hooper, P., Raje, F., Flindell, I., Dimitriu, D., Galatioto, F., Burtea, N. E., Ohlenforst, B., & Konovalova, O. (2021). The role of communication and engagement in airport noise management. Sustainability, 13(11), Article 6088. https://doi.org/10.3390/su13116088> https://doi.org/10.3390/su13116088

International Air Transport Association. (2023). Global outlook for air transport. https://www.iata.org/en/iata-repository/publications/economic-reports/global-outlook-for-air-transport----june-2023/> https://www.iata.org/en/iata-repository/publications/economic-reports/global-outlook-for-air-transport----june-2023/

International Air Transport Association. (2024). Worldwide airport slot guidelines (WASG). https://www.iata.org/contentassets/4ede2aabfcc14a55919e468054d714fe/wasg-edition-3-english-version.pdf> https://www.iata.org/contentassets/4ede2aabfcc14a55919e468054d714fe/wasg-edition-3-english-version.pdf

International Civil Aviation Organization. (2020). Airport air quality manual (Doc 9829). https://www.icao.int/Publications/Documents/9889_cons_en.Pdf> https://www.icao.int/Publications/Documents/9889_cons_en.Pdf

Lithuanian Airports. (2023). Operations (VNO). https://www.ltou.lt/en/aviation/operations-vno> https://www.ltou.lt/en/aviation/operations-vno

Mills, K. L., Filliben, J. J., & Haines, A. L. (2015). Determining relative importance and effective settings for genetic algorithm control parameters. Evolutionary Computation, 23(2), 309–342. https://doi.org/10.1162/EVCO_a_00137> https://doi.org/10.1162/EVCO_a_00137

Mohamed, A.-M. O., Paleologos, E. K., & Howari, F. M. (2021). Noise pollution and its impact on human health and the environment. In Pollution assessment for sustainable practices in applied sciences and engineering (pp. 975–1026). Elsevier. https://doi.org/10.1016/B978-0-12-809582-9.00019-0> https://doi.org/10.1016/B978-0-12-809582-9.00019-0

Orikpete, O. F., Dennis, N. M., Kikanme, K. N., & Ewim, D. R. E. (2024). Advancing noise management in aviation: Strategic approaches for preventing noise-induced hearing loss. Journal of Environmental Management, 363, Article 121413. https://doi.org/10.1016/j.jenvman.2024.121413> https://doi.org/10.1016/j.jenvman.2024.121413

Pang, Y., Zhao, P., Hu, J., & Liu, Y. (2024). Machine learning-enhanced aircraft landing scheduling under uncertainties. Transportation Research Part C: Emerging Technologies, 158, Article 104444. https://doi.org/10.1016/j.trc.2023.104444> https://doi.org/10.1016/j.trc.2023.104444

Pretto, M., Giannattasio, P., De Gennaro, M., Zanon, A., & Kuehnelt, H. (2020). Forecasts of future scenarios for airport noise based on collection and processing of web data. European Transport Research Review, 12(1), Article 4. https://doi.org/10.1186/s12544-019-0389-x> https://doi.org/10.1186/s12544-019-0389-x

Puechmorel, S., & Delahaye, D. (2007). 4D trajectories: A functional data perspective. In 2007 IEEE/AIAA 26th Digital Avionics Systems Conference (1.C.6-1-1.C.6-12). IEEE. https://doi.org/10.1109/DASC.2007.4391832> https://doi.org/10.1109/DASC.2007.4391832

Ribeiro, N. A., Jacquillat, A., Antunes, A. P., Odoni, A. R., & Pita, J. P. (2018). An optimization approach for airport slot allocation under IATA guidelines. Transportation Research Part B: Methodological, 112, 132–156. https://doi.org/10.1016/j.trb.2018.04.005> https://doi.org/10.1016/j.trb.2018.04.005

Rodríguez-Díaz, A., Adenso-Díaz, B., & González-Torre, P. L. (2017). A review of the impact of noise restrictions at airports. Transportation Research Part D: Transport and Environment, 50, 144–153. https://doi.org/10.1016/j.trd.2016.10.025> https://doi.org/10.1016/j.trd.2016.10.025

Rodríguez-Díaz, A., Adenso-Díaz, B., & González-Torre, P. L. (2019). Improving aircraft approach operations taking into account noise and fuel consumption. Journal of Air Transport Management, 77, 46–56. https://doi.org/10.1016/j.jairtraman.2019.03.004> https://doi.org/10.1016/j.jairtraman.2019.03.004

Smith, M. G., Cordoza, M., & Basner, M. (2022). Environmental noise and effects on sleep: An update to the WHO systematic review and meta-analysis. Environmental Health Perspectives, 130(7). https://doi.org/10.1289/EHP10197> https://doi.org/10.1289/EHP10197

World Health Organization. (2019). Night noise guidelines for Europe. https://iris.who.int/bitstream/handle/10665/326486/9789289041737-eng.pdf> https://iris.who.int/bitstream/handle/10665/326486/9789289041737-eng.pdf

Zeng, W., Ren, Y., Wei, W., & Yang, Z. (2021). A data-driven flight schedule optimization model considering the uncertainty of operational displacement. Computers & Operations Research, 133, Article 105328. https://doi.org/10.1016/j.cor.2021.105328> https://doi.org/10.1016/j.cor.2021.105328

Zhu, D., Peng, J., & Ding, C. (2024). A neural network with physical mechanism for predicting airport aviation noise. Aerospace, 11(9), Article 747. https://doi.org/10.3390/aerospace11090747> https://doi.org/10.3390/aerospace11090747

Zografos, K. G., Madas, M. A., & Androutsopoulos, K. N. (2017). Increasing airport capacity utilisation through optimum slot scheduling: Review of current developments and identification of future needs. Journal of Scheduling, 20(1), 3–24. https://doi.org/10.1007/s10951-016-0496-7> https://doi.org/10.1007/s10951-016-0496-7

View article in other formats

CrossMark check

CrossMark logo

Published

2025-05-15

Issue

Section

Articles

How to Cite

Šitkauskaitė, A., & Leonavičiūtė, V. (2025). Data-based flight optimization model for scheduling: noise management approach. Aviation, 29(2), 61–70. https://doi.org/10.3846/aviation.2025.23577

Share