Share:


Disadvantageous effects of vibrations on the micro-hydraulic relief valve: experimental approach

    Krzysztof Towarnicki Affiliation

Abstract

The paper discusses the negative impact of external mechanical vibrations, which lead to the malfunction of drive systems, particularly affecting hydrostatic drives. The hydraulic system components feature a spring-supported control element that vibrates due to external mechanical vibrations, leading to pressure pulsation. The resulting pressure pulsation causes many unfavorable characteristics of hydraulic system operation. The positive displacement pump is shown as the main source of pressure pulsation in a hydraulic system. For selected frequencies of external mechanical vibration close to the natural frequency of the valve control element, the resulting pressure pulsation far exceeds the pressure pulsation resulting from the displacement pump. This paper presents selected results showing pressure pulsations as a consequence of the displacement pump and external mechanical vibrations acting on the pressure-relief valve.

Keyword : microhydraulics, valve, vibrations, pressure pulsation, experimental research, frequency spectrum, aircraft, aviation industry

How to Cite
Towarnicki, K. (2025). Disadvantageous effects of vibrations on the micro-hydraulic relief valve: experimental approach. Aviation, 29(1), 55–60. https://doi.org/10.3846/aviation.2025.23165
Published in Issue
Mar 27, 2025
Abstract Views
12
PDF Downloads
7
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Adeoye, A. O. M., Aderobaa, A. A., & Oladapo, B. I. (2017). Simulated design of a flow control valve stroke speed adjustment of hydraulic power of robotic lifting device. Procedia Engineering, 173, 1499–1506. https://doi.org/10.1016/j.proeng.2016.12.230

Bouzidi, S. E., Hassan, M., & Ziada, S. (2018). Experimental characterisation of the self-excited vibrations of spring-loaded valves. Journal of Fluids and Structures, 76, 558–572. https://doi.org/10.1016/j.jfluidstructs.2017.11.007

Bureika, G. (2024). Estimation of running smoothness and derailmnet stability considering the parameters of passenger car suspension. In O. Prentkovskis, I. Yatskiv (Jackiva), P. Skačkauskas, M. Karpenko, & M. Stosiak (Eds), TRANSBALTICA XIV: Transportation Science and Technology. TRANSBALTICA 2023. Lecture Notes in Intelligent Transportation and Infrastructure. Springer (pp. 594–603). https://doi.org/10.1007/978-3-031-52652-7_59

Karpenko, M., & Bogdevičius, M. (2020). Investigation of hydrodynamic processes in the system – “pipeline-fittings”. In K. Gopalakrishnan, O. Prentkovskis, I. Jackiva, & R. Junevičius (Eds), TRANSBALTICA XI: Transportation Science and Technology. TRANSBALTICA 2019. Lecture Notes in Intelligent Transportation and Infrastructure (pp. 331–340). Springer. https://doi.org/10.1007/978-3-030-38666-5_35

Karpenko, M. (2022). Landing gear failures connected with high-pressure hoses and analysis of trends in aircraft technical problems. Aviation, 26(3), 145–152. https://doi.org/10.3846/aviation.2022.17751

Karpenko, M., & Nugaras, J. (2022). Vibration damping characteristics of the cork-based composite material in line to frequency analysis. Journal of Theoretical and Applied Mechanics, 60(4), 593–602. https://doi.org/10.15632/jtam-pl/152970

Karpenko, M., Stosiak, M., Šukevičius, Š., Skačkauskas, P., Urbanowicz, K., & Deptuła, A. (2023). Hydrodynamic processes in angular fitting connections of a transport machine’s hydraulic drive. Machines, 11(3), Article 355. https://doi.org/10.3390/machines11030355

Karpenko, M., Ževžikov, P., Stosiak, M., Skačkauskas, P., Borucka, A., & Delembovskyi, M. (2024). Vibration research on centrifugal loop dryer machines used in plastic recycling processes. Machines, 12(1), Article 29. https://doi.org/10.3390/machines12010029

Kilikevicius, A., Fursenko, A., Jurevicius, M., Kilikeviciene, K., & Bureika, G. (2019). Analysis of parameters of railway bridge vibration caused by moving rail vehicles. Measurement and Control, 52(9–10), 1210–1219. https://doi.org/10.1177/0020294019836123

Klarecki, K., Rabsztyn, D., & Czop, P. (2024). Modeling of filtration phenomenon in hydrostatic drives. Machines, 12(6), Article 417. https://doi.org/10.3390/machines12060417

Kollek, W., Kudźma, Z., Rutański, J., & Stosiak, M. (2010). Acoustic problems relating to microhydraulic components and systems. Archive of Mechanical Engineering, 57(3), 293–308. https://doi.org/10.2478/v10180-010-0016-9

Kollek, W. (2011). Microhydraulic components and systems. Fundamentals of design, modelling and operation. Wroclaw University of Technology Publishing House.

Kudźma, Z. (2001). Obniżenie hałasu przekładni hydrostatycznej podczas rozruchu. Hydraulika i Pneumatyka, 2001(6), 5–8.

Kudźma, Z. (2012). Tłumienie pulsacji ciśnienia i hałasu w układach hydraulicznych w stanach przejściowych i ustalonych. Oficyna Wydawnicza Politechniki Wrocławskiej (in Polish).

Kudźma, Z., & Stosiak, M. (2012). Zawór mikromaksymalny (Patent nr. 221214). Urząd Patentowy Rzeczypospolitej Polskiej. (in Polish).

Li, R., Wang, Z., Xu, J., Yuan, W., Wang, D., Ji, H., & Chen, S. (2024). Design and optimization of hydraulic slide valve spool structure based on steady state flow force. Flow Measurement and Instrumentation, 96, Article 102568. https://doi.org/10.1016/j.flowmeasinst.2024.102568

Puzyrewski, R., & Sawicki, J. (1987). Podstawy mechaniki płynów i hydrauliki. PWN. (in Polish).

Rabsztyn, D., & Klarecki, K. (2023). Impact of suction space leaks on the discharge pressure pulsation of positive displacement pump. Journal of KONBiN, 53(2), 131–140. https://doi.org/10.5604/01.3001.0053.6841

Stecki, J. S., & Garbacik, A. (2002). Design and steady-state analysis of hydraulic control systems. Fluid Power Net Publications.

Stosiak, M. (2015). The impact of hydraulic systems on the human being and the environment. Journal Theoretical Applied Mechanics, 53(2), 409–420. https://doi.org/10.15632/jtam-pl.53.2.409

Stosiak, M., Towarnicki, K., Partyka, M. A., & Deptuła, A. (2020). Analiza oddziaływania drgań na zawór mikrohydrauliczny wykorzystująca sieci neuronowe i drzewa indukcyjne. In W. T. Łagoda, M. Kurek, & A. Kurek, Projektowanie i eksploatacja maszyn roboczych (red.) (Cz. II, no. 542, pp. 17–37). Oficyna Wydawnicza Politechniki Opolskiej.

Stosiak, M., & Towarnicki, K. (2022). Possibilities of effective passive vibration isolation of hydraulic valves. Journal of Theoretical and Applied Mechanics, 60(1), 113–127. https://doi.org/10.15632/jtam-pl/144794

Stosiak, M., Karpenko, M., Deptuła, A., Urbanowicz, K., Skačkauskas, P., Deptuła, A., Danilevičius, A., Šukevičius, Š., & Łapka, M. (2023a). Research of vibration effects on a hydraulic valve in the pressure pulsation spectrum analysis. Journal of Marine Science and Engineering, 11(2), Article 301. https://doi.org/10.3390/jmse11020301

Stosiak, M., Karpenko, M., Prentkovskis, O., Deptuła, A., & Skačkauskas, P. (2023b). Research of vibrations effect on hydraulic valves in military vehicles. Defence Technology, 30, 111–125. https://doi.org/10.1016/j.dt.2023.03.023

Stosiak, M., Skačkauskas, P., Towarnicki, K., Deptuła, A., Deptuła, A. M., Prażnowski, K., Grzywacz, Ż., Karpenko, M., Urbanowicz, K., & Łapka, M. (2023c). Analysis of the impact of vibrations on a micro-hydraulic valve using a modified induction algorithm. Machines, 11(2), Article 184. https://doi.org/10.3390/machines11020184

Stosiak, M., & Karpenko, M. (2024). Dynamics of machines and hydraulic systems. Mechanical vibrations and pressure pulsations. synthesis lectures on mechanical engineering. Springer. https://doi.org/10.1007/978-3-031-55525-1

Stosiak, M., Towarnicki, K., Prentkovskis, O., Skačkauskas, P., & Karpenko, M. (2022). Hydraulic lift valve with compensation of external mechanical vibration (Patent application no P443296).

Szydelski, Z. (1980). Napęd i sterowanie hydrauliczne w pojazdach i samojezdnych maszynach roboczych. WNT. (in Polish).

Towarnicki, K., Stosiak, M., Prentkovskis, O., Skačkauskas, P., Karpenko, M. (2022). Hydraulic lift valve with compensation of external mechanical vibration (Patent application no P443297).

Yin, Y., Wang, D., Li, W., Fu, J., He, P., & Zhang, X. (2023). Effect of the resonance suppression damping on the stability of a cartridge pilot-operated relief valve. Journal of Fluids and Structures, 121, Article 103948. https://doi.org/10.1016/j.jfluidstructs.2023.103948

Zhang, Y., Zhou, K., Zhou, J., Chang, Ch., Gong, D., & Sun, W. (2024). Frictional vibration analysis of train braking system considering wheel-rail attachment and multi-body friction. International Journal of Non-Linear Mechanics, 162, Article 104715. https://doi.org/10.1016/j.ijnonlinmec.2024.104715