Aerodynamic investigation by experimental and computational simulation of a flying wing unmanned aerial vehicle for cargo delivery and surveillance missions
Abstract
Baseline-IX is a tailless aircraft design with compound wing attached to a short body, a transition between a straight, swept flying wing design and a blended wing-body. Baseline-IX planform was designed to deal with a small BWB UAV that is capable of cargo delivery and surveillance missions. The design is influenced by the requirement of cargo space to carry batteries medical and other emergency supplies in its fuselage with a nose-mounted mission camera with a wingspan under 2.0 meters. This paper focuses on studying the aerodynamic characteristics of the novel Baseline-IX, inspired by its predecessor, the Baseline-V. Aerodynamic characteristics of Baseline-IX were investigated and validated through numerical computational simulations and wind tunnel experiments. The maximum lift-to-drag ratio of Baseline-IX obtained through this study is 15.14 for 1:2.4 scaled model and 17.46 for 1:1 prototype. Numerical simulation and wind tunnel experiments’ lift-to-drag ratio percentage difference is 4.92%. Baseline-IX’s lift-to-drag ratio surpasses 14.09% and 24.28% over similar-missions UAV operating in the market while both are larger in size. Baseline-IX has the potential to be developed as a small, easy to carry cargo delivery and surveillance BWB UAV.
Keyword : tail-less compound wing-body, blended wing-body, unmanned aerial vehicle, wind tunnel experiment, aerodynamics
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Apetrei, R. M., Ciobaca, V., Curiel-Sosa, J. L., & Qin, N. (2020). Unsteady shock front waviness in shock-buffet of transonic aircraft. Advances in Aerodynamics, 2(1). https://doi.org/10.1186/s42774-020-00034-x
Aprovitola, A., Aurisicchio, F., Di Nuzzo, P. E., Pezzella, G., & Viviani, A. (2022). Low speed aerodynamic analysis of the N2A hybrid wing–body. Aerospace, 9(2), Article 89. https://doi.org/10.3390/aerospace9020089
Arora, A., Das, S., & Kumar, P. (2023). Flow field investigation of a blended wing body in low speeds. Journal of Applied Fluid Mechanics, 16(4), 794–804. https://doi.org/10.47176/jafm.16.04.1475
Chen, Z., Zhang, M., Chen, Y., Sang, W., Tan, Z., Li, D., & Zhang, B. (2019). Assessment on critical technologies for conceptual design of blended-wing-body civil aircraft. Chinese Journal of Aeronautics, 32(8), 1797–1827. https://doi.org/10.1016/j.cja.2019.06.006
Dehpanah, P., & Nejat, A. (2015). The aerodynamic design evaluation of a blended-wing-body configuration. Aerospace Science and Technology, 43, 96–110. https://doi.org/10.1016/j.ast.2015.02.015
Dimitriou, S., Kapsalis, S., Dimopoulos, T., Mitridis, D., Pouchias, K., Panagiotou, P., & Yakinthos, K. (2022). Preliminary design of a BWB UAV for highway traffic monitoring. IOP Conference Series: Materials Science and Engineering, 1226(1), Article 012010. https://doi.org/10.1088/1757-899X/1226/1/012010
Erickson, L. L. (1990). Panel methods – an introduction. In NASA Technical Paper 2995. NASA.
Jemitola, P. O., & Okonwo, P. P. (2022). An analysis of aerodynamic design issues of box wing aircraft. Global Journal of Researches in Engineering, 22(1).
Kapsalis, S., Panagiotou, P., & Yakinthos, K. (2021). CFD-aided optimization of a tactical Blended-Wing-Body UAV platform using the Taguchi method. Aerospace Science and Technology, 108, Article 106395. https://doi.org/10.1016/j.ast.2020.106395
Karpenko, M., & Nugaras, J. (2022). Vibration damping characteristics of the cork-based composite material in line with frequency analysis. Journal of Theoretical and Applied Mechanics, 60(4), 593–602. https://doi.org/10.15632/jtam-pl/152970
Karpenko, M., Stosiak, M., Deptula, A., Urbanowicz, K., Nugaras, J., Krolczyk, G., & Zak, K. (2023). Performance evaluation of extruded polystyrene foam for aerospace engineering applications using frequency analyses. The International Journal of Advanced Manufacturing Technology, 126(11–12), 5515–5526. https://doi.org/10.1007/s00170-023-11503-0
Kusumohadi, C. S., Basri, S., & Rafie, A. S. M. (2021). Conceptual design of Wau Bulan UAV. IOP Conference Series: Materials Science and Engineering, 1098(6), Article 062106. https://doi.org/10.1088/1757-899X/1098/6/062106
Latif, M. Z. A. A., Ahmad, M. A., Nasir, R. E. M., Wisnoe, W., & Saad, M. R. (2017). An analysis on 45° sweep tail angle for blended wing body aircraft to the aerodynamics coefficients by wind tunnel experiment. IOP Conference Series: Materials Science and Engineering, 270(1). https://doi.org/10.1088/1757-899X/270/1/012001
Li, P., Zhang, B., Chen, Y., Yuan, C., & Lin, Y. (2012). Aerodynamic design methodology for blended wing body transport. Chinese Journal of Aeronautics, 25(4), 508–516. https://doi.org/10.1016/S1000-9361(11)60414-7
Liebeck, R. H. (2004). Design of the blended wing body subsonic transport. Journal of Aircraft, 41(1). https://doi.org/10.2514/1.9084
Mariën, F., & Scholz, I. D. (2021). Software Testing: VSPAERO [Hamburg University of Applied Science]. Harvard Dataverse. https://doi.org/10.7910/DVN/0S1R14
Mohammad Zadeh, P., & Sayadi, M. (2018). An efficient aerodynamic shape optimization of blended wing body UAV using multi-fidelity models. Chinese Journal of Aeronautics, 31(6), 1165–1180. https://doi.org/10.1016/j.cja.2018.04.004
Muta’ali, A. B. A., Nasir, R. E. M., Wisnoe, W., & Kuntjoro, W. (2020). Aerodynamic performance of a tail-less blended wing-body small transport aircraft. Journal of Advanced Research in Fluid Mechanics and Thermal Sciences, 66(1).
Nasir, R. E. M., Ahmad, A. M., Latif, Z. A. A., Saad, R. M., & Kuntjoro, W. (2017). Experimental result analysis for scaled model of UiTM tailless blended wing-body (BWB) Baseline 7 unmanned aerial vehicle (UAV). IOP Conference Series: Materials Science and Engineering, 270(1). https://doi.org/10.1088/1757-899X/270/1/012005
Nasir, R. E. M., Tajuddin, N. F., Muta’ali, A. B. A., Kuntjoro, W., Wisnoe, W., & Romli, F. I. (2021). The effect of inboard and outboard wing sweep angles to lift-to-drag ratio of a compound wing-body using panel code. Journal of Aeronautics, Astronautics and Aviation, 53(2), 155–164. https://doi.org/10.6125/JoAAA.202106_53(2).07
Okonkwo, P., & Smith, H. (2016). Review of evolving trends in blended wing body aircraft design. Progress in Aerospace Sciences, 82, 1–23. https://doi.org/10.1016/j.paerosci.2015.12.002
Panagiotou, P., Antoniou, S., & Yakinthos, K. (2022). Cant angle morphing winglets investigation for the enhancement of the aerodynamic, stability and performance characteristics of a tactical Blended-Wing-Body UAV. Aerospace Science and Technology, 123. https://doi.org/10.1016/j.ast.2022.107467
Panagiotou, P., Fotiadis-Karras, S., & Yakinthos, K. (2018). Conceptual design of a Blended Wing Body MALE UAV. Aerospace Science and Technology, 73, 32–47. https://doi.org/10.1016/j.ast.2017.11.032
Papadopoulos, C., Mitridis, D., & Yakinthos, K. (2022). Conceptual design of a novel unmanned ground effect vehicle (UGEV) and flow control integration study. Drones, 6(1). https://doi.org/10.3390/drones6010025
Qin, N., Vavalle, A., Le Moigne, A., Laban, M., Hackett, K., & Weinerfelt, P. (2004). Aerodynamic considerations of blended wing body aircraft. Progress in Aerospace Sciences, 40(6), 321–343. https://doi.org/10.1016/j.paerosci.2004.08.001
Raja, V., Murugesan, R., Solaiappan, S. K., Arputharaj, B. S., Rajendran, P., Al-Bonsrulah, H. A. Z., Thakur, D., Razak, A., Buradi, A., & Ketema, A. (2023). Design, computational aerodynamic, aerostructural, and control stability investigations of VTOL-configured hybrid blended wing body-based unmanned aerial vehicle for intruder inspections. International Journal of Aerospace Engineering, 2023. https://doi.org/10.1155/2023/9699908
Tai, S., Wang, L., Wang, Y., Bu, C., Yue, T., & Liu, H. (2023). Research on dynamic characteristics analysis and control law design method of model aircraft in wind tunnel–based virtual flight testing. Journal of Aerospace Engineering, 36(3). https://doi.org/10.1061/JAEEEZ.ASENG-4565
Viviani, A., Aprovitola, A., Iuspa, L., & Pezzella, G. (2020). Low speed longitudinal aerodynamics of a blended wing-body re-entry vehicle. Aerospace Science and Technology, 107. https://doi.org/10.1016/j.ast.2020.106303
Wang, G., Zhang, M., Tao, Y., Li, J., Li, D., Zhang, Y., Yuan, C., Sang, W., & Zhang, B. (2020). Research on analytical scaling method and scale effects for subscale flight test of blended wing body civil aircraft. Aerospace Science and Technology, 106. https://doi.org/10.1016/j.ast.2020.106114
Wang, L., Zuo, X., Liu, H., Yue, T., Jia, X., & You, J. (2019). Flying qualities evaluation criteria design for scaled-model aircraft based on similarity theory. Aerospace Science and Technology, 90, 209–221. https://doi.org/10.1016/j.ast.2019.04.032
Waters, S. M., Voskuijl, M., Veldhuis, L. L. M., & Geuskens, F. J. J. M. M. (2013). Control allocation performance for blended wing body aircraft and its impact on control surface design. Aerospace Science and Technology, 29(1), 18–27. https://doi.org/10.1016/j.ast.2013.01.004
Wolowicz, C. H., Bowman, J. S., & Gilbert, W. P. (1979). Similitude requirements and scaling relationships as applied to model testing. NASA. https://ntrs.nasa.gov/api/citations/19790022005/downloads/19790022005.pdf
Xu, J. (2017). Design perspectives on delivery drones. RAND. https://doi.org/10.7249/RR1718.2
Xu, X., Li, Q., Liu, D., Cheng, K., & Chen, D. (2020). Geometric effects analysis and verification of v-shaped support interference on blended wing body aircraft. Applied Sciences (Switzerland), 10(5), Article 1596. https://doi.org/10.3390/app10051596
Zeng, C., Abnous, R., Gabani, K., Chowdhury, S., & Maldonado, V. (2020). A new tilt-arm transitioning unmanned aerial vehicle: Introduction and conceptual design. Aerospace Science and Technology, 99, Article 105755. https://doi.org/10.1016/j.ast.2020.105755
Zipline. (2022). About Zipline: Zipline fact sheet. https://www.flyzipline.com/about/zipline-fact-sheet