Share:


Analytical calculation approach for rocket nose cone structure with orthotropic material

    Arief Budi Sanjaya Affiliation
    ; Haryadi Abrizal Affiliation
    ; Muhammad Dito Saputra Affiliation
    ; Rahmat Alfi Duhri Affiliation
    ; Muhamad Hananuputra Setianto Affiliation
    ; Ahmedi Asraf Affiliation
    ; Hendra Gantina Affiliation

Abstract

The Authors of this research developed an analytical calculation method to estimate the strength of nose cone structures made of orthotropic materials, which were crucial components in aircraft and spacecraft. Strength analysis of nose cones had been comprehensively addressed for isotropic materials; however, the lack of efficient approaches for orthotropic materials presented a challenge. In this research, a new analytical method was proposed, combining membrane stress theory for isotropic materials with classical laminate theory for orthotropic materials. This approach enabled the determination of stresses on the nose cone shell structure in both meridional and circumferential directions in an efficient and straightforward manner. The analysis results indicated that the developed analytical method exhibited stress distribution trends similar to those obtained using the Finite Element Method. Stresses in the +45° and –45° direction, as well as in-plane shear stress and Tsai-Wu failure indices, showed trend similarity between the two methods. Despite specific numerical differences in the calculation results, these consistent trends suggested that the analytical method could serve as a tool for the preliminary design of a nose cone structure with a similar configuration analyzed in this study.

Keyword : nose cone, analytical method, isotropic, orthotropic, membrane stress theory, classical laminate theory

How to Cite
Sanjaya, A. B., Abrizal, H., Saputra, M. D., Duhri, R. A., Setianto, M. H., Asraf, A., & Gantina, H. (2024). Analytical calculation approach for rocket nose cone structure with orthotropic material. Aviation, 28(3), 163–174. https://doi.org/10.3846/aviation.2024.22194
Published in Issue
Oct 11, 2024
Abstract Views
157
PDF Downloads
68
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Ahmad, K., Baig, Y., Rahman, H., & Hasham, H. J. (2020). Progressive failure analysis of helicopter rotor blade under aeroelastic loading. Aviation, 24(1), 33–41. https://doi.org/10.3846/aviation.2020.12184

Aghdam, M. M., Shahmansouri, N., & Bigdeli, K. (2011). Bending analysis of moderately thick functionally graded conical panels. Composite Structures, 93(5), 1376–1384. https://doi.org/10.1016/j.compstruct.2010.10.020

Aribowo, A., Adhynugraha, M. I., Megawanto, F. C., Hidayat, A., Muttaqie, T., Wandono, F. A., Nurrohmad, A., Chairunnisa, Saraswati, Sh. O., Wiranto, I. B., Al Fikri, I. R., & Saputra, M. D. (2023). Finite element method on topology optimization applied to laminate composite of fuselage structure. Curved and Layered Structures, 10(1), 1–16. https://doi.org/10.1515/cls-2022-0191

Casavola, C., Cazzato, A., Moramarco, V., & Pappalettere, C. (2016). Orthotropic mechanical properties of fused deposition modelling parts described by classical laminate theory. Materials & Design, 90, 453–458. https://doi.org/10.1016/j.matdes.2015.11.009

Crowell, G. A. (1996). The descriptive geometry of nose cones. https://web.archive.org/web/20110411143013/http://www.if.sc.usp.br/~projetosulfos/artigos/NoseCone_EQN2.PDF

Davies, J., Grove, R., Bell, T., Rea, O., Furkert, M., Zhao, D., & Sellier, M. (2022). Preliminary design and test of high altitude two-stage rockets in New Zealand. Aerospace Science and Technology, 128, Article 107741. https://doi.org/10.1016/j.ast.2022.107741

George, J. S., Vasudevan, A., & Mohanavel, V. (2021). Vibration analysis of interply hybrid composite for an aircraft wing structure. Materials Today: Proceedings, 37, 2368–2374. https://doi.org/10.1016/j.matpr.2020.08.078

Gheshlaghi, R. M., Hojjati, M. H., & Daniali, H. R. M. (2006). Analysis of tubular composite cylindrical shells. In E. E. Gdoutos (Ed.), Fracture of nano and engineering materials and structures (pp. 333–334). Springer. https://doi.org/10.1007/1-4020-4972-2_164

Guan, Z. W., Aktas, A., Potluri, P., Cantwell, W. J., Langdon, G., & Nurick, G. N. (2014). The blast resistance of stitched sandwich panels. International Journal of Impact Engineering, 65, 137–145. https://doi.org/10.1016/j.ijimpeng.2013.12.001

Guo, S., Hu, P., & Li, S. (2021). Free vibration analysis of composite conical shells using Walsh series method. Materials Research Express, 8(7), Article 75303. https://doi.org/10.1088/2053-1591/ac0eb7

Iranmanesh, R., Alizadeh, A., Faraji, M., & Choubey, G. (2023). Numerical investigation of compressible flow around nose cone with Multi-row disk and multi coolant jets. Scientific Reports, 13(1), 787–787. https://doi.org/10.1038/s41598-023-28127-9

Karpenko, M., Stosiak, M., Deptuła, A., Urbanowicz, K., Nugaras, J., Królczyk, G., & Żak, K. (2023). Performance evaluation of extruded polystyrene foam for aerospace engineering applications using frequency analyses. International Journal of Advanced Manufacturing Technology, 126(11–12), 5515–5526. https://doi.org/10.1007/s00170-023-11503-0

Kolios, A. J., & Proia, S. (2012). Evaluation of the reliability performance of failure criteria for composite structures. World Journal of Mechanics, 2(3), 162–170. https://doi.org/10.4236/wjm.2012.23019

Kuitche, M., & Botez, R. (2017). Methodology of estimation of aerodynamic coefficients of the UAS-S4 ethical using Datcom and VLM procedure. In AIAA Modeling and Simulation Technologies Conference. AIAA. https://doi.org/10.2514/6.2017-3152

Kurdianto, Rahmat, M. Z., Islami, G. I., Rustamaji, Fakhri, M., Rahardiyanti, K., Sudiana, O., Arisandi, E. D., Purnomo, H., & Ibadi, M. (2023). Analysis of the effects of composite materials on the rocket nosecone on VSWR value of 900MHZ antenna frequency. In 2023 3rd International Conference on Innovative Research in Applied Science, Engineering and Technology (IRASET) (pp. 1–5). IEEE. https://doi.org/10.1109/IRASET57153.2023.10152912

Logan, D. L., & Widera, G. E. O. (1989). Membrane theory for anisotropic laminated shells of revolution. Journal of Pressure Vessel Technology, 111(2), 130–135. https://doi.org/10.1115/1.3265649

Loth, E., Tyler Daspit, J., Jeong, M., Nagata, T., & Nonomura, T. (2021). Supersonic and hypersonic drag coefficients for a sphere. AIAA Journal, 59(8), 3261–3274. https://doi.org/10.2514/1.J060153

Lubecki, M., Stosiak, M., Skačkauskas, P., Karpenko, M., Deptuła, A., & Urbanowicz, K. (2022). Development of composite hydraulic actuators: A review. Actuators, 11(12), Article 365. https://doi.org/10.3390/act11120365

Mathew, B. C., Bandyo, O., Tomar, A., Kumar, A., Ahuja, A., & Patil, K. (2021). A review on computational drag analysis of rocket nose cone. Proceedings of the Workshop on Control and Embedded Systems (WCES 2021), 2875(1), 95–105.

Purwoko, Vicarneltor, D. N., Purnomo, H., Najati, N., Rifa’i, M. J., Rizkyta, A. G., Setianto, M. H., Ibadi, M., Andiarti, R., Yunus, M., & Azhari, A. (2023, October). Assessment of composite radome impacts on the signal transmission of the 2.4 GHz frequency band. In 2023 IEEE International Conference on Aerospace Electronics and Remote Sensing Technology (ICARES) (pp. 1–5). IEEE. https://doi.org/10.1109/ICARES60489.2023.10329894

Reddy, J. N. (2007). Theory and analysis of elastic plates and shells (2nd ed.). CRC Press. https://doi.org/10.1201/9780849384165

Sayyad, A. S., & Ghugal, Y. M. (2019). Static and free vibration analysis of laminated composite and sandwich spherical shells using a generalized higher-order shell theory. Composite Structures, 219, 129–146. https://doi.org/10.1016/j.compstruct.2019.03.054

Shadmehri, F., Hoa, S. V., & Hojjati, M. (2012). Buckling of conical composite shells. Composite Structures, 94(2), 787–792. https://doi.org/10.1016/j.compstruct.2011.09.016

Shi, Y., Cheng, Q., Alizadeh, A., Yan, H., Choubey, G., Fallah, K., & Shamsborhan, M. (2023). Influence of lateral single jets for thermal protection of reentry nose cone with multi-row disk spike at hypersonic flow: Computational study. Scientific Reports, 13(1), 6549–6549. https://doi.org/10.1038/s41598-023-33739-2

Srivastava, L., Krishnanand, L., Kishore Nath, N., Hirwani, C., & Babu, M. (2022a). Online structural integrity monitoring of high-performance composite rocket motor casing. Materials Today: Proceedings, 56, 1001–1009. https://doi.org/10.1016/j.matpr.2022.03.230

Srivastava, L., Krishnanand, L., Behera, S., & Kishore Nath, N. (2022b). Failure mode effect analysis for a better functional composite rocket motor casing. Materials Today: Proceedings, 62, 4445–4454. https://doi.org/10.1016/j.matpr.2022.04.933

Tita, V., Caliri Júnior, M. F., & Massaroppi Junior, E. (2011). Theoretical models to predict the mechanical behavior of thick composite tubes. Materials Research, 15(1), 70–80. https://doi.org/10.1590/S1516-14392011005000092

Tsushima, N., & Su, W. (2017). Concurrent active piezoelectric control and energy harvesting of highly flexible multifunctional wings. Journal of Aircraft, 54(2), 724–736. https://doi.org/10.2514/1.C033846

Ugural, A. C. (2017). Plates and shells: Theory and analysis (4 ed.). CRC Press. https://doi.org/10.1201/9781315104621

Ukirde, K., & Rathod, S. (2023). Aerodynamic analysis of various nose cone geometries for rocket launch vehicle at different Mach regimes. AIP Conference Proceedings, 2855(1). https://doi.org/10.1063/5.0179070

Ventsel, E., & Krauthammer, T. (2001). Thin plates and shells: Theory, analysis and applications. CRC Press. https://doi.org/10.1201/9780203908723

Zawawi, M. H., Saleha, A., Salwa, A., Hassan, N. H., Zahari, N. M., Ramli, M. Z., & Muda, Z. C. (2018). A review: Fundamentals of computational fluid dynamics (CFD). AIP Conference Proceedings, 2030(1). https://doi.org/10.1063/1.5066893

Zingoni, A., & Enoma, N. (2020). On the strength and stability of elliptic toroidal domes. Engineering Structures, 207, Article 110241. https://doi.org/10.1016/j.engstruct.2020.110241