Share:


The impact of mechanical vibrations on hydraulic valves and the possibility of reducing the effects

    Michał Stosiak Affiliation
    ; Paulius Skačkauskas Affiliation
    ; Adam Deptuła Affiliation

Abstract

The paper shows that mechanical vibrations occur in a wide frequency range in the hydraulic systems operating in the real world. Hydraulic valves are also exposed to these vibrations. The paper gives examples of vibration sources and suggests that the influence of vibrations on hydraulic valves could be reduced. Particular attention was paid to the vibrating proportional distributor. The amplitude-frequency spectrum of pressure pulsation in a hydraulic system with a vibrating proportional distributor was analysed. During the tests, the frequency of external mechanical vibrations acting on the proportional distributor and their direction was changed.

Keyword : mechanical vibrations, hydraulic system, valve, aircraft, frequency analysis

How to Cite
Stosiak, M., Skačkauskas, P., & Deptuła, A. (2024). The impact of mechanical vibrations on hydraulic valves and the possibility of reducing the effects. Aviation, 28(1), 40–48. https://doi.org/10.3846/aviation.2024.20904
Published in Issue
Mar 28, 2024
Abstract Views
93
PDF Downloads
162
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Abdelkareem, A. A. M., Xu, L., Jing, X., Eldaly, B. M. A., Zou, J., & Ali, M. K. A. (2021). Field measurements of the harvestable power potentiality of an off-road sport-utility vehicle. Measurement, 179, Article 109381. https://doi.org/10.1016/j.measurement.2021.109381

Ahirrao, N. S., Bhosle, S. P., & Nehete, D. V. (2018). Dynamics and vibration measurements in engines. Procedia Manufacturing, 20, 434–439. https://doi.org/10.1016/j.promfg.2018.02.063

Arnold, J. J., & Griffin, M. J. (2018). Equivalent comfort contours for fore-and-aft, lateral, and vertical whole-body vibration in the frequency range 1.0 to 10 Hz. Ergonomics, 61(11), 1545–1559. https://doi.org/10.1080/00140139.2018.1517900

Awad, H., & Parrondo, J. (2020). Hydrodynamic self-excited vibrations in leaking spherical valves with annular seal. Alexandria Engineering Journal, 59(3), 1515–1524. https://doi.org/10.1016/j.aej.2020.03.033

Bach, D., Masselter, T., & Speck, T. (2017). Damping of pressure pulsations in mobile hydraulic applications by the use of closed cell cellular rubbers integrated into a vane pump. Journal of Bionic Engineering, 14(4), 791–803. https://doi.org/10.1016/S1672-6529(16)60444-4

Banaszek, A., & Petrovic, R. (2019). Problem of non proportional flow of hydraulic pumps working with constant pressure regulators in big power multipump power pack unit in open system. Technical Gazette, 26(2), 294–301. https://doi.org/10.17559/TV-20161119215558

Banaszek, A., Łosiewicz, Z., & Jurczak, W. (2018). Corrosion influence on safety of hydraulic pipelines installed on decks of contemporary product and chemical tankers. Polish Maritime Research, 98(2), 71–77. https://doi.org/10.2478/pomr-2018-0056

Bouzidi, S. E., Hassan, M., & Ziada, S. (2018). Experimental characterisation of the self-excited vibrations of spring-loaded valves. Journal of Fluids and Structures, 76, 558–572. https://doi.org/10.1016/j.jfluidstructs.2017.11.007

Bovsunovsky, A., & Nosal, O. (2022). Highly sensitive methods for vibration diagnostic of fatigue damage in structural elements of aircraft gas turbine. Procedia Structural Integrity, 35, 74–81. https://doi.org/10.1016/j.prostr.2021.12.050

Cao, H., Kang, T., & Chen, X. (2019). Noise analysis and sources identification in machine tool spindles. CIRP Journal of Manufacturing Science and Technology, 25, 26–35. https://doi.org/10.1016/j.cirpj.2019.04.001

Czerwiński, A., & Łuczko, J. (2015). Parametric vibrations of flexible hoses excited by a pulsating fluid flow, Part II: Experimental research. Journal of Fluids and Structures, 55, 174–190. https://doi.org/10.1016/j.jfluidstructs.2015.03.007

Engel, Z., & Zawieska, M. (2010). Noise and vibrations in working processes sources risk assessment (1st ed.). CIOB PIB (in Polish).

Gao, P., Tao Yu, T., Zhang, Y., Wang, J., & Zhai, J. (2021). Vibration analysis and control technologies of hydraulic pipeline system in aircraft: A review. Chinese Journal of Aeronautics, 34(4), 83–114. https://doi.org/10.1016/j.cja.2020.07.007

Govindan, R., Saran, V. H., & Harsha, S. P. (2020). Low-frequency vibration analysis of human body in semi-supine posture exposed to vertical excitation. European Journal of Mechanics – A/Solids, 80, Article 103906. https://doi.org/10.1016/j.euromechsol.2019.103906

Han, M., Liu, Y., Wu, D., Zhao, X., & Tan, H. (2017). A numerical investigation in characteristics of flow force under cavitation state inside the water hydraulic poppet valves. International Journal of Heat and Mass Transfer, 111, 1–16. https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.100

Harris, C., & Piersol, A. (2009). Harris’ shock and vibration handbook (6th ed.). McGraw Hill.

He, J., Zhang, Y., Liu, X., Li, B., Sun, S., Peng, J., & Liu, W. (2023). Experiment and simulation study on cavitation flow in pressure relief valve at different hydraulic oil temperatures. Flow Measurement and Instrumentation, 89, Article 102289. https://doi.org/10.1016/j.flowmeasinst.2022.102289

Jia, J., Zhang, J., & Huang, Z. (2022). Cavitation flow and broadband noise source characteristics of NACA66 hydrofoil with a V groove on the suction surface. Ocean Engineering, 266(2), Article 112889. https://doi.org/10.1016/j.oceaneng.2022.112889

Josifovic, A., Roberts, J. J., Corney, J., Davies, B., & Shipton, Z. K. (2016). Reducing the environmental impact of hydraulic fracturing through design optimisation of positive displacement pumps. Energy, 115(1), 1216–1233. https://doi.org/10.1016/j.energy.2016.09.016

Karpenko, M., & Nugaras, J. (2022). Vibration damping characteristics of the cork-based composite material in line to frequency analysis. Journal of Theoretical and Applied Mechanics, 60(4), 593–602. https://doi.org/10.15632/jtam-pl/152970

Krause, L., Par, S., & Töpken, S. (2023). Pleasantness ratings for vertical whole-body vibration on an aircraft seat and relevant body parts involved. Applied Acoustics, 207, Article 109330. https://doi.org/10.1016/j.apacoust.2023.109330

Liu, J., Liu, Z., Wu, J., Li, Z., Chen, P., & Gu, X. (2022). Visualization experiment and numerical calculation of the cavitation evolution inside the injector ball valve. Fuel, 329(1), Article 125500. https://doi.org/10.1016/j.fuel.2022.125500

Łuczko, J., & Czerwiński, A. (2016). Experimental and numerical investigation of parametric resonance of flexible hose conveying non-harmonic fluid flow. Journal of Sound and Vibration, 373, 236–250. https://doi.org/10.1016/j.jsv.2016.03.029

Mansfield, N. J., & Aggarwal, G. (2022). Whole-body vibration experienced by pilots, passengers and crew in fixed-wing aircraft: A state-of-the-science review. Vibration, 5(1), 110–120. https://doi.org/10.3390/vibration5010007

Pan, Y., Li, Y., Huang, M., Liao, Y., & Liang, D. (2018). Noise source identification and transmission path optimisation for noise reduction of an axial piston pump. Applied Acoustics, 130, 283–292. https://doi.org/10.1016/j.apacoust.2017.10.009

Pan, Y., Liu, R., Bin, G., & He, X. (2022). Vibration and noise reduction of phononic crystal structure laid on the noise transmission path of axial piston pump. Applied Acoustics, 200, Article 109075. https://doi.org/10.1016/j.apacoust.2022.109075

Pang, H., Wu, D., Deng, Y., Cheng, Q., & Liu, Y. (2021). Effect of working medium on the noise and vibration characteristics of water hydraulic axial piston pump. Applied Acoustics, 183, Article 108277. https://doi.org/10.1016/j.apacoust.2021.108277

Park, C., Kim, D. G., Yim, G. T., Park, Y., & Moon, I. (2020). A validation study of the model test method for propeller cavitation noise prediction. Ocean Engineering, 213, Article 107655. https://doi.org/10.1016/j.oceaneng.2020.107655

Polski Komitet Normalizacyjny. (2009). PN-EN ISO 9612:2009 Akustyka – Wyznaczanie zawodowej ekspozycji na hałas – Metoda techniczna. https://sklep.pkn.pl/pn-en-iso-9612-2009e.html

Polski Komitet Normalizacyjny. (2016). PN-B-02170:2016-12 Ocena szkodliwości drgań przekazywanych przez podłoże na budynki. https://sklep.pkn.pl/pn-b-02170-2016-12p.html

Polski Komitet Normalizacyjny. (2017). PN-B-02171:2017-06 Ocena wpływu drgań na ludzi w budynkach. https://sklep.pkn.pl/pn-b-02171-2017-06p.html

Savcı, İ. H., Şener, R., & Duman, İ. (2022). A study of signal noise reduction of the mass air flow sensor using the flow conditioner on the air induction system of heavy-duty truck. Flow Measurement, and Instrumentation, 83, Article 102121. https://doi.org/10.1016/j.flowmeasinst.2022.102121

Schmitz, T. L. (2012). Mechanical vibrations: Modeling and measurement (1st ed.). Springer-Verlag. https://doi.org/10.1007/978-1-4614-0460-6

Song, P., Wei, Z., Zhen, H., Liu, M., & Ren, J. (2022). Effects of pre-whirl and blade profile on the hydraulic and cavitation performance of a centrifugal pump. International Journal of Multiphase Flow, 157, Article 104261. https://doi.org/10.1016/j.ijmultiphaseflow.2022.104261

Sovardi, C., Jaensch, S., & Polifke, W. (2016). Concurrent identification of aero-acoustic scattering and noise sources at a flow duct singularity in low Mach number flow. Journal of Sound and Vibration, 377, 90–105. https://doi.org/10.1016/j.jsv.2016.05.025

Stosiak, M., Karpenko, M., Deptuła, A., Urbanowicz, K., Skačkauskas, P., Cieślicki, R., & Deptuła, A. M. (2023). Modelling and Experimental verification of the interaction in a hydraulic directional control valve spool pair. Applied Sciences, 13(1), Article 458. https://doi.org/10.3390/app13010458

Wang, H., Chen, Z., & Huang, J. (2021). Improvement of vibration frequency and energy efficiency in the uniaxial electro-hydraulic shaking tables for sinusoidal vibration waveform. Energy, 218, Article 119477. https://doi.org/10.1016/j.energy.2020.119477

Wang, H., Lai, Z., Wu, D., Zhang, K., & Zheng, M. (2022). Investigation of the friction-induced vibration of a novel four-way reversing valve using spectral kurtosis and number of peaks spectrum. Mechanical Systems and Signal Processing, 166, Article 108425. https://doi.org/10.1016/j.ymssp.2021.108425

Wegener, K., Bleicher, F., Heisel, U., Hoffmeister, H. W., & Möhring, H. C. (2021). Noise and vibrations in machine tools. CIRP Annals, 70(2), 611–633. https://doi.org/10.1016/j.cirp.2021.05.010

Xu, W., Wang, Z., Zhou, Z., Sun, C., Zhang, J., Yan, R., & Chen, X. (2023). An advanced pressure pulsation model for external gear pump. Mechanical Systems and Signal Processing, 187, Article 109943. https://doi.org/10.1016/j.ymssp.2022.109943

Yupapin, P., & Pornsuwancharoen, N. (2019). Asphalt road surface vibration and force distribution generated by pickup truck braking. Measurement, 148, Article 106871. https://doi.org/10.1016/j.measurement.2019.106871

Zhang, D., Juan, M., Zhang, Z., Gao, P., Jin, J., Wang, J., & Yu, T. (2022) A dynamic modeling approach for vibration analysis of hydraulic pipeline system with pipe fitting. Applied Acoustics, 197, Article 108952. https://doi.org/10.1016/j.apacoust.2022.108952

Zhang, J. D., Kabir, K. M. M., Lee, H. E., & Donald, W. A. (2018). Chiral recognition of amino acid enantiomers using high-definition differential ion mobility mass spectrometry. International Journal of Mass Spectrometry, 428, 1–7. https://doi.org/10.1016/j.ijms.2018.02.003

Zhao, L., Wu, J. Y., Jin, Z. J., & Qian, J. Y. (2022). Cavitation effect on flow resistance of sleeve regulating valve. Flow Measurement and Instrumentation, 88, Article 102259. https://doi.org/10.1016/j.flowmeasinst.2022.102259

Zheng, G., Qiu, Y., & Griffin, M. J. (2019). Fore-and-aft and dual-axis vibration of the seated human body: Nonlinearity, cross-axis coupling, and associations between resonances in the transmissibility and apparent mass. International Journal of Industrial Ergonomics, 69, 58–65. https://doi.org/10.1016/j.ergon.2018.08.007