Forecasting aircraft miles flown time series using a deep learning-based hybrid approach
Abstract
Neural network-based methods such as deep neural networks show great efficiency for a wide range of applications. In this paper, a deep learning-based hybrid approach to forecast the yearly revenue passenger kilometers time series of Australia’s major domestic airlines is proposed. The essence of the approach is to use a resilient error backpropagation algorithm with dropout for “tuning” the polynomial neural network, obtained as a result of a multi-layered GMDH algorithm. The article compares the performance of the suggested algorithm on the time series with other popular forecasting methods: deep belief network, multi-layered GMDH algorithm, Box-Jenkins method and the ANFIS model. The minimum reached MAE of the proposed algorithm was approximately 25% lower than the minimum MAE of the next best method – GMDH, thus indicating that the practical application of the algorithm can give good results compared with other well-known methods.
Keywords:
forecasting, neural networks, time series, deep learning, hybrid algorithm, group method of data handlingHow to Cite
Share
License
Copyright (c) 2018 The Author(s). Published by Vilnius Gediminas Technical University.
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Abed, S. Y., Ba-Fail, A. O., & Jasimuddin, S. M. (2001). An econometric analysis of international air travel demand in Saudi Arabia. Journal of Air Transport Management, 7(3), 143-148. https://doi.org/10.1016/S0969-6997(00)00043-0"> https://doi.org/10.1016/S0969-6997(00)00043-0
Asteriou, D., & Hall, S. G. (2011). ARIMA Models and the Box–Jenkins methodology. In Applied Econometrics (2nd ed., pp. 265-286). Palgrave MacMillan.
Australian Domestic Airline Activity-time series. (n.d.). Retrieved from https://bitre.gov.au/publications/ongoing/files/domestic_airline_activity_Domestic_Annual_Summary_1944_2012-13.xls"> https://bitre.gov.au/publications/ongoing/files/domestic_airline_activity_Domestic_Annual_Summary_1944_2012-13.xls
Ba-Fail, A. O., Abed, S. Y., & Jasimuddin, S. M. (2000). The determinants of domestic air travel demand in the Kingdom of Saudi Arabia. Journal of Air Transportation World Wide, 5(2), 72-86.
Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.
Bahdanau, D., Chorowski, J., Serdyuk, D., Brakel, P., & Bengio, Y. (2016). End-to-end attention-based large vocabulary speech recognition. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai (pp. 4945-4949). https://doi.org/10.1109/ICASSP.2016.7472618"> https://doi.org/10.1109/ICASSP.2016.7472618
Bengio, Y., De Mori, R., Flammia, G., & Kompe, R. (1992). Global optimization of a neural network-hidden Markov model hybrid. IEEE Transactions on Neural Networks, 3(2), 252-259. https://doi.org/10.1109/72.125866"> https://doi.org/10.1109/72.125866
Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies with gradient descent is difficult. IEEE Transactions on Neural Networks, 5(2), 157-166. https://doi.org/10.1109/72.279181"> https://doi.org/10.1109/72.279181
Blinova, T. O. (2007). Analysis of possibility of using neural network to forecast passenger traffic flows in Russia. Aviation 11(1), 28-34.
Box, G., & Jenkins, G. (1970). Time series analysis: Forecasting and control (pp. 211-216). San Francisco: Holden-Day.
Chao, J., Shen, F., & Zhao, J. (2011, July). Forecasting exchange rate with deep belief networks. In The 2011 International Joint Conference on Neural Networks (IJCNN) (pp. 1259-1266). IEEE. https://doi.org/10.1109/IJCNN.2011.6033368"> https://doi.org/10.1109/IJCNN.2011.6033368
Doganis, R. (2009). Flying off course: airline economics and marketing (4th ed.). Abingdon: Routledge.
Erhan, D., Bengio, Y., Courville, A., Manzagol, P. A., Vincent, P., & Bengio, S. (2010). Why does unsupervised pre-training help deep learning?. Journal of Machine Learning Research, 11(Feb), 625-660.
Fang, H. (2012). Adaptive neuro fuzzy inference system in the application of the financial crisis. International Journal of Innovation, Management and Technology, 3(3), 250-254.
Girshick, R., Donahue, J., Darrell, T. & Malik, J. (2013). Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. https://doi.org/10.1109/CVPR.2014.81"> https://doi.org/10.1109/CVPR.2014.81
Goyal, M. K., Bharti, B., Quilty, J., Adamowski, J., & Pandey, A. (2014). Modelling of daily pan evaporation in subtropical climates using ANN, LS-SVR, Fuzzy Logic, and ANFIS. Expert Systems with Applications, 41(11), 5267-5276. https://doi.org/10.1016/j.eswa.2014.02.047"> https://doi.org/10.1016/j.eswa.2014.02.047
Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. R. (2012). Improving neural networks by preventing co-adaptation of feature detectors. WS13/14 Machine Learning Seminar, (pp. 1-18). Retrieved from https://arxiv.org/pdf/1207.0580.pdf"> https://arxiv.org/pdf/1207.0580.pdf
Hinton, G. E. (1989). Deterministic Boltzmann learning performs steepest descent in weight-space. Neural Computation, 1(1), 143-150. https://doi.org/10.1162/neco.1989.1.1.143"> https://doi.org/10.1162/neco.1989.1.1.143
Hinton, G. E. (2009). Deep belief networks. Scholarpedia, 4(5), 5947. https://doi.org/10.4249/scholarpedia.5947"> https://doi.org/10.4249/scholarpedia.5947
Hochreiter, S., Bengio, Y., Frasconi, P., & Schmidhuber, J. (2001). Gradient flow in recurrent nets: the difficulty of learning longterm dependencies. Retreived from http://www.bioinf.jku.at/publications/older/ch7.pdf"> http://www.bioinf.jku.at/publications/older/ch7.pdf
Hoeting, J. A., Madigan, D., Raftery, A. E., & Volinsky, C. T. (1998, May). Bayesian model averaging. In Proceedings of the AAAI Workshop on Integrating Multiple Learned Models (Vol. 335, pp. 77-83).
Jang, J. S. R. 1993. ANFIS-adaptive-network-based fuzzy inference system. IEEE Transactions Systems, Man and Cybernetics, 23(3), 665-685. https://doi.org/10.1109/21.256541"> https://doi.org/10.1109/21.256541
Jang, J. S. R., Sun, C. T., & Mizutani, E. (1997). Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence (1st ed.). New Jersey: Prentice Hall.
Kondo, T. (1998, July). GMDH neural network algorithm using the heuristic self-organization method and its application to the pattern identification problem. In SICE’98. Proceedings of the 37th SICE Annual Conference. International Session Papers (pp. 1143-1148). IEEE. https://doi.org/10.1109/SICE.1998.742993"> https://doi.org/10.1109/SICE.1998.742993
Krogh, A., & Hertz, J. A. (1992). A simple weight decay can improve generalization. In M. I. Jordan, Y. LeCun & S. A. Solla. Advances in neural information processing systems (pp. 950-957). The MIT Press.
Kuremoto, T., Kimura, S., Kobayashi, K., & Obayashi, M. (2014). Time series forecasting using a deep belief network with restricted Boltzmann machines. Neurocomputing, 137, 47-56. https://doi.org/10.1016/j.neucom.2013.03.047"> https://doi.org/10.1016/j.neucom.2013.03.047
LeCun, Y., Bottou, L., Orr, G. B., & Müller, K. R. (1998). Efficient backprop. In Neural networks: Tricks of the trade (pp. 9-50). Berlin, Heidelberg: Springer. https://doi.org/10.1007/3-540-49430-8_2"> https://doi.org/10.1007/3-540-49430-8_2
Lee, H., Grosse, R., Ranganath, R., & Ng, A. Y. (2009, June). Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In Proceedings of the 26th Annual International Conference on Machine Learning (pp. 609-616). ACM. https://doi.org/10.1145/1553374.1553453"> https://doi.org/10.1145/1553374.1553453
Liu, C., Liu, X., Huang, H., & Zhao, L. (2008). Low circle fatigue life model based on ANFIS. In D. S. Huang, D. C. Wunsch II, D. S. Levine, et al. (Eds.). Advanced intelligent computing theories and applications: With aspects of contemporary intelligent computing techniques (pp. 139-144). Berlin: Springer Verlag. https://doi.org/10.1007/978-3-540-85930-7_19"> https://doi.org/10.1007/978-3-540-85930-7_19
Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M. (2013). Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602.
Prechelt, L. (1998). Automatic early stopping using cross validation: quantifying the criteria. Neural Networks, 11(4), 761-767. https://doi.org/10.1016/S0893-6080(98)00010-0"> https://doi.org/10.1016/S0893-6080(98)00010-0
Qiu, X., Zhang, L., Ren, Y., Suganthan, P. N., & Amaratunga, G. (2014, December). Ensemble deep learning for regression and time series forecasting. In 2014 IEEE Symposium on Computational Intelligence in Ensemble Learning (CIEL) (pp. 1-6). IEEE. https://doi.org/10.1109/CIEL.2014.7015739"> https://doi.org/10.1109/CIEL.2014.7015739
Riedmiller, M., & Braun, H. (1992). Rprop – A fast adaptive learning algorithm. In Proceedings of the International Symposium on Computer and Information Science VII (pp. 57-64).
Rosenblatt, F. (1958). The perceptron: A probalistic model for information storage and organization in the brain. Psychological Review, 65(6), 386-408. https://doi.org/10.1037/h0042519"> https://doi.org/10.1037/h0042519
Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks, 61, 85-117. https://doi.org/10.1016/j.neunet.2014.09.003"> https://doi.org/10.1016/j.neunet.2014.09.003
Srinivasan, D. (2008). Energy demand prediction using GMDHnetworks. Neurocomputing, 72(1-3), 625-629. https://doi.org/10.1016/j.neucom.2008.08.006"> https://doi.org/10.1016/j.neucom.2008.08.006
Stepashko, V. S. (1988). GMDH Algorithms as basis of modeling process automation after experimental data. Soviet Journal of Automation and Information Sciences, 21(4), 43-53.
Xiao, Y., Liu, J. J., Hu, Y., Wang, Y., Lai, K. K., & Wang, S. (2014). A neuro-fuzzy combination model based on singular spectrum analysis for air transport demand forecasting. Journal of Air Transport Management, 39, 1-11. https://doi.org/10.1016/j.jairtraman.2014.03.004"> https://doi.org/10.1016/j.jairtraman.2014.03.004
Yetilmezsoy, K., Fingas, M., & Fieldhouse, B. (2011). An adaptive neuro-fuzzy approach for modelling of water-in-oil emulsion formation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 389(1-3), 50-62. https://doi.org/10.1016/j.colsurfa.2011.08.051"> https://doi.org/10.1016/j.colsurfa.2011.08.051
View article in other formats
Published
Issue
Section
Copyright
Copyright (c) 2018 The Author(s). Published by Vilnius Gediminas Technical University.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.