A simultaneous path planning and positioning based on artificial distribution of landmarks in a GNSS denied environment


In recent years, exploration operations by autonomous robots are expanding into unknown environments on Earth, under the sea, or even on other planets. This paper proposes the idea of Concurrent Path Planning and Positioning (CPPAP) using artificially distributed landmarks, while no GNSS signal is available. The method encompasses an observability-based direction search algorithm for path planning in parallel with Simultaneous Localization and Mapping (SLAM) for localization. Most of the path planning methods utilize offline algorithms; however, the proposed method determines the robot’s direction of motion in real-time, concurrently with the positioning tasks by the inclusion of the system observability, related to the features’ distribution. Same as in all feature-based SLAMs, features play an important role in determination of the most observable direction, and hence the direction of the robot’s motion. Moreover, the effectiveness of the distribution of the features and their pattern in the proposed method is investigated. To evaluate the efficiency and accuracy of the CPPAP, outcomes are compared with an existing random SLAM.

Keyword : concurrent path planning and positioning (CPPAP), simultaneous localization and mapping (SLAM), Eigenvalue observability analysis, artificial landmarks, GNSS denied environments

How to Cite
Elahian, S., Amiri Atashgah, M.-A., & Tarverdizadeh, B. (2023). A simultaneous path planning and positioning based on artificial distribution of landmarks in a GNSS denied environment. Aviation, 27(1), 36–46.
Published in Issue
Mar 7, 2023
Abstract Views
PDF Downloads
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Aguilar-López, R., Mata-Machuca, J. L., & Martinez-Guerra, R. (2010). On the observability for a class of nonlinear (bio)chemical systems. International Journal of Chemical Reactor Engineering, 8(1).

Aggarwal, S., & Kumar, N. (2020). Path planning techniques for unmanned aerial vehicles: A review, solutions, and challenges. Computer Communications, 149, 270–299.

Aminzadeh, A., & Amiri Atashgah, M. A. (2018). Feature article: Implementation and performance evaluation of optical flow navigation system under specific conditions for a flying robot. IEEE Aerospace and Electronic Systems Magazine, 33(11), 20–28.

Amiri Atashgah, M. A., & Malaek, S. M. B. (2013). Prediction of aerial-image motion blurs due to the flying vehicle dynamics and camera characteristics in a virtual environment. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 227(7), 1055–1067.

Bahraini, M. S., Bozorg, M., & Rad, A. B. (2018). A new adaptive UKF algorithm to improve the accuracy of SLAM. International Journal of Robotics, 5(1), 35–46.

Bakdi, A., Hentout, A., Boutami, H., Maoudj, A., Hachour, O., & Bouzouia, B. (2017). Optimal path planning and execution for mobile robots using genetic algorithm and adaptive fuzzy-logic control. Robotics and Autonomous Systems, 89, 95–109.

Barrau, A., & Bonnabel, S. (2015). An EKF-SLAM algorithm with consistency properties. Cornell University.

Batista, P., Silvestre, C., & Oliveira, P. (2011). Single range aided navigation and source localization: Observability and filter design. Systems & Control Letters, 60(8), 665–673.

Bryson, M., & Sukkarieh, S. (2008). Observability analysis and active control for airborne SLAM. IEEE Transactions on Aerospace and Electronic Systems, 44(1), 261–280.

Butcher, E. A., Wang, J., & Lovell, T. A. (2017). On Kalman filtering and observability in nonlinear sequential relative orbit estimation. Journal of Guidance, Control, and Dynamics, 40(9), 2167–2182.

Carlone, L., Du, J., Kaouk Ng, M., Bona, B., & Indri, M. (2014). Active SLAM and exploration with particle filters using Kullback-Leibler divergence. Journal of Intelligent and Robotic Systems: Theory and Applications, 75(2), 291–311.

Chakraborty, A., Misra, S., Sharma, R., & Taylor, C. N. (2017). Observability conditions for switching sensing topology for cooperative localization. Unmanned Systems, 5(3), 141–157.

Chen, C. (1999). Linear system theory and design. Oxford University Press.

Chen, Y. B., Luo, G. C., Mei, Y. S., Yu, J. Q., & Su, X. L. (2014). UAV path planning using artificial potential field method updated by optimal control theory. International Journal of Systems Science, 47(6), 1407–1420.

Clemens, J., Reineking, T., & Kluth, T. (2016). An evidential approach to SLAM, path planning, and active exploration. International Journal of Approximate Reasoning, 73, 1–26.

Fakoor, M., Kosari, A., & Jafarzadeh, M. (2016). Humanoid robot path planning with fuzzy Markov decision processes. Journal of Applied Research and Technology, 14(5), 300–310.

Fethi, D., Nemra, A., Louadj, K., & Hamerlain, M. (2018). Simultaneous localization, mapping, and path planning for unmanned vehicle using optimal control. Advances in Mechanical Engineering, 10(1).

Fraundorfer, F., & Scaramuzza, D. (2012). Visual odometry: Matching, robustness, optimization, and applications. IEEE Robotics & Automation Magazine, 19(2).

Fu, B., Chen, L., Zhou, Y., Zheng, D., Wei, Z., Dai, J., & Pan, H. (2018). An improved A* algorithm for the industrial robot path planning with high success rate and short length. Robotics and Autonomous Systems, 106, 26–37.

González, D., Pérez, J., Milanés, V., & Nashashibi, F. (2016). A review of motion planning techniques for automated vehicles. IEEE Transactions on Intelligent Transportation Systems, 17(4), 1135–1145.

Hahn, J., Edgar, T. F., Marquardt, W. (2003). Controllability and observability covariance matrices for the analysis and order reduction of stable nonlinear systems. Journal of Process Control, 13(2), 115–127.

Ham, F. M., & Grover Brown, R. (1983). Observability, eigenvalues, and Kalman filtering. IEEE Transactions on Aerospace and Electronic Systems, AES-19(2), 269–273.

Hasegawa, Y., & Fujimoto, Y. (2016). Experimental verification of path planning with SLAM. IEEJ Journal of Industry Applications, 5(3), 253–260.

Hermann, R., Krener, A. (1977). Nonlinear controllability and observability. IEEE Transactions on Automatic Control, AC-22(5), 728–740.

Hesch, J. A., Kottas, D. G., Bowman, S. L., & Roumeliotis, S. I. (2013). Camera-IMU-based localization: Observability analysis and consistency improvement. The International Journal of Robotics Research, 33(1), 182–201.

Huang, G. P., Mourikis, A. I., Roumeliotis, S. I. (2008). Analysis and improvement of the consistency of extended Kalman filter based SLAM. In IEEE International Conference on Robotics and Automation (ICRA). IEEE Xplore.

Huang, G. P., Mourikis, A. I., & Roumeliotis, S. I. (2009). On the complexity and consistency of UKF-based SLAM. In 2009 IEEE International Conference on Robotics and Automation. IEEE.

Huang, L., Song, J., Zhang, Ch. (2017). Observability analysis and filter design for a vision inertial absolute navigation system for UAV using landmarks. Optik, 149, 455–468.

Kalogeiton, V. S., Ioannidis, K., Sirakoulis, G. C., & Kosmatopoulos, E. B. (2019). Real-time active SLAM and obstacle avoidance for an autonomous robot based on stereo vision. Cybernetics and Systems, 50(3), 239–260.

Kurt-Yavuz, Z., & Yavuz, S. (2012). A comparison of EKF, UKF, FastSLAM2.0, and UKF-based FastSLAM algorithms. In 2012 IEEE 16th International Conference on Intelligent Engineering Systems (INES) (pp. 37–43). IEEE.

Lall, S., Marsden, J. E., & Glavaški, S. (2002). A subspace approach to balanced truncation for model reduction of nonlinear control systems. International Journal of Robust and Nonlinear Control, 12(6), 519–535.

Lee, K. W., Wijesoma, W. S., Ibanez Guzman, J. (2006). On the observability and observability analysis of SLAM. In 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE.

Leonard, M. R., & Zoubir, A. M. (2019). Multi-Target tracking in distributed sensor networks using particle PHD filters. Signal Processing, 159, 130–146.

Leung, C., Huang, S., & Dissanayake, G. (2006). Active SLAM using model predictive control and attractor based exploration. In IEEE International Conference on Intelligent Robots and Systems (pp. 5026–5031). IEEE.

Lystianingrum, V., Hredzak, B., Agelidis, V. G., & Djanali, V. S. (2014). Observability degree criteria evaluation for temperature observability in a battery string towards optimal thermal sensors placement. In 2014 IEEE 9th International Conference on Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP). IEEE.

Mac, T. T., Copot, C., Tran, D. T., & De Keyser, R. (2016). Heuristic approaches in robot path planning: A survey. Robotics and Autonomous Systems, 86, 13–28.

Maurovic, I., Seder, M., Lenac, K., & Petrovic, I. (2018). Path planning for active SLAM based on the D*algorithm with negative edge weights. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48(8), 1321–1331.

Myhre, N. (2018). Vision-aided navigation using tracked lankmarks [Doctoral Dissertations and Master’s Theses]. Embry-Riddle Aeronautical University.

Nijmeijer, H., & van der Schaft, A. (1990). Nonlinear dynamical control systems. Springer.

Niu, H., Savvaris, A., Tsourdos, A., & Ji, Z. (2019). Voronoi-visibility roadmap-based path planning algorithm for unmanned surface vehicles. The Journal of Navigation, 72(4), 850–874.

Patle, B. K., Babu L, G., Pandey, A., Parhi, D. R. K., & Jagadeesh, A. (2019). A review: On path planning strategies for navigation of mobile robot. Defence Technology, 15(4), 582–606.

Perez, A., Platt, R., Konidaris, G., Kaelbling, L., & Lozano-Perez, T. (2012). LQR-RRT*: Optimal sampling-based motion planning with automatically derived extension heuristics. In IEEE International Conference on Robotics and Automation (pp. 2537–2542). IEEE.

Qu, C., Gai, W., Zhong, M., & Zhang, J. (2020). A novel reinforcement learning based grey wolf optimizer algorithm for unmanned aerial vehicles (UAVs) path planning. Applied Soft Computing, 89, 106099.

Rasekhipour, Y., Khajepour, A., Chen, S. K., & Litkouhi, B. (2017). A potential field-based model predictive path-planning controller for autonomous road vehicles. IEEE Transactions on Intelligent Transportation Systems, 18(5), 1255–1267.

Serpas, M., Hackebeil, G., Laird, C., & Hahn, J. (2013). Sensor location for nonlinear dynamic systems via observability analysis and MAX-DET optimization. Computers and Chemical Engineering, 48, 105–112.

Sharma, R. (2014). Observability based control for cooperative localization. In 2014 International Conference on Unmanned Aircraft Systems (ICUAS) (pp. 134–139). IEEE.

Sharma, R., Beard, R. W., Taylor, C. N., & Quebe, S. (2012). Graph-based observability analysis of bearing-only cooperative localization. IEEE Transactions on Robotics, 28(2), 522–529.

Tao, T., Huang, Y., Sun, F., Wang, T. (2007). Motion planning for SLAM based on frontier exploration. In 2007 International Conference on Mechatronics and Automation. IEEE.

Van Den Berg, F. W. J., Hoefsloot, H. C. J., Boelens, H. F. M., & Smilde, A. K. (2000). Selection of optimal sensor position in a tubular reactor using robust degree of observability criteria. Chemical Engineering Science, 55(4), 827–837.

Wang, Z., & Cai, J. (2018). Probabilistic roadmap method for path-planning in radioactive environment of nuclear facilities. Progress in Nuclear Energy, 109, 113–120.

Xu, W., He, D., Cai, Y., & Zhang, F. (2022). Robots’ state estimation and observability analysis based on statistical motion models. IEEE Transactions on Control Systems Technology, 30(5), 2030–2045.

Yousif, K., Bab-Hadiashar, A., & Hoseinnezhad, R. (2015). An overview to visual odometry and visual SLAM: Applications to mobile robotics. Intelligent Industrial Systems, 1(4), 289–311.

Zammit, C., & van Kampen, E. J. (2018). Comparison between A* and RRT algorithms for UAV path planning. In 2018 AIAA Guidance, Navigation, and Control Conference, 2018, 210039. Aerospace Research Central.

Zhang, F., Li, S., Yuan, S., Sun, E., & Zhao, L. (2018). Algorithms analysis of mobile robot SLAM based on Kalman and particle filter. In 2017 9th International Conference On Modelling, Identification and Control (ICMIC) (pp. 1050–1055). IEEE.

Zhang, G., & Vela, P. A. (2015). Good features to track for visual SLAM. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (pp. 1373–1382). IEEE.

Zhang, Y., Zhang, T., & Huang, S. (2018). Comparison of EKF based SLAM and optimization based SLAM algorithms. In 2018 13th IEEE Conference on Industrial Electronics and Applications (ICIEA) (pp. 1308–1313).