Share:


Quantification model of airport ground support equipment emissions

    Lucas Sznajderman   Affiliation
    ; Matías Coppa   Affiliation
    ; Juan F. Martiarena Affiliation
    ; Oscar Díaz Olariaga   Affiliation

Abstract

Emissions of aircraft support vehicles (called Ground Support Equipment or GSE) are produced by a series of factors depending mostly on the following: aircraft arrivals and departures and time spent in parking stands, aircraft type, operation type (traditional, with scale or low cost), geometrical arrangement of the apron and fleet charactistics, including power and years of use, among others. The aim of this work is to develop an integrated model identifying the required GSEs and the gaseous emissions produced by them due to apron traffic and aircraft service. In order to do this, in the case of service, the model proposes considering loading and unloading and dividing them into the following stages: wait, connection, service and disconnection. The advantage of the proposed model over other proposals is that this model aims at copying the real movements of support vehicles in service according to the aircraft and its corresponding operation (Full-Service, Low-Cost or scale). In order to do that, the program discretizes GSE movements into loading and unloading processes through different stages and for circulation where the tool itself sets the parameters of the apron.

Keyword : sustainable air transport, airport environmental management, airport operations, aviation emissions, quantification model

How to Cite
Sznajderman, L., Coppa, M., Martiarena, J. F., & Díaz Olariaga, O. (2022). Quantification model of airport ground support equipment emissions. Aviation, 26(4), 195–208. https://doi.org/10.3846/aviation.2022.17967
Published in Issue
Nov 29, 2022
Abstract Views
698
PDF Downloads
668
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Aerocivil. (2021). Estadísticas de las Actividades Aeronáuticas. https://www.aerocivil.gov.co/atencion/estadisticas-de-las-actividades-aeronauticas

Airport Authority Hong Kong. (2014). Expansion of Hong Kong International Airport into a Three-Runway System GSE – Appendix 5.3.3-2. Airport Authority Hong Kong.

Alomar, I., Tolujevs, J., & Medvedevs, A. (2017). Simulation of ground vehicles movement on the aerodrome. Procedia Engineering, 178, 340–348. https://doi.org/10.1016/j.proeng.2017.01.061

ANAC & Ministerio de transporte Argentina. (2021). Plan de acción del Estado Argentino para la reducción de emisiones de CO2 en laaviación. https://www.argentina.gob.ar/sites/default/files/plan_de_accion_del_estado_argentino_para_la_reduccion_de_emisiones_de_co2_en_la_aviacion.pdf

Ashok, A., Balakrishnan, H., & Barrett, S. (2017). Reducing the air quality and CO2 climate impacts of taxi and takeoff operations at airports. Transportation Research Part D, 54, 287–303. https://doi.org/10.1016/j.trd.2017.05.013

Azorín Gonzalez, I., Burgaz Aranguren, B., de Diego Parra, S., Rodriguez Martinez, J., Galán Olea, M., & Nakhaee-Zadeh Gutierrez, A. (2013). Optimization of future ground operations for aircraft (Working Paper). Universidad Rey Juan Carlos, Spain. http://www.aerospaceengineering.es/wp-content/uploads/2013/12/main_Surf_operations.pdf

Bo, X., Xue, X., Xu, J., Du, X., Zhou, B., & Tang, L. (2019). Aviation’s emissions and contribution to the air quality in China. Atmospheric Environment, 201, 121–131. https://doi.org/10.1016/j.atmosenv.2019.01.005

Bukovac, S., & Douglas, I. (2019). The potential impact of High Speed Rail development on Australian aviation. Journal of Air Transport Management, 78, 164–174. https://doi.org/10.1016/j.jairtraman.2019.01.003

Carl Moyer Program. (1998). Draft airport ground support equipment project criteria. California Environmental Protection Agency. Air resources Board.

Coppa, M. (2019, October 9–11). Indicador ambiental: Emisiones de CO2 en los aeropuertos SABE, SACO, SASA, SAZB, SAZS, SAVC, SANC, SAVE de Argentina. In VII RIDITA – International Congress of the Iberoamerican Air Transportation Research Society (pp. 1–12). Covilha, Portugal.

Darecki, M., Edelstenne, C., Enders, T., Fernandez, E., Hartman, P., Herteman, J., & Wörner, J. (2011). Flightpath 2050. In Flightpath 2050 Europe’s vision for aviation (p. 28). European Commission. https://doi.org/10.2777/50266

Dong, Q., Chen, F., & Chen, Z. (2020). Airports and air pollutions: Empirical evidence from China. Transport Policy, 99, 385–395. https://doi.org/10.1016/j.tranpol.2020.09.007

Evertse, C., & Visser, H. G. (2017). Real-time airport surface movement planning: Minimizing aircraft emissions. Transportation Research Part C, 79, 224–241. https://doi.org/10.1016/j.trc.2017.03.018

Federal Aviation Administration. (2002). EDMS Reference Manual Supplement – EDMS 4.1 Default GSE Assignment Revisions. https://www.faa.gov/about/office_org/headquarters_offices/apl/research/models/edms_model/media/42sup.pdf

Federal Office for the Environment FOEN. (2010). Pollutant Emissions from Road Transport, 1990 to 2035. Federal Office for the Environment FOEN.

Fleuti, E. (2006). Ground Power Unit (GPU) Exhaust Emissions at Zurich Airport. Technical report. Flughafen Zurich AG.

Fleuti, E. (2014). Aircraft Ground Handling Emissions. Technical report. Flughafen Zurich AG.

Gomez, F., Scholz, D., & Tor, B. (2009, September). Improvements to ground handling operations and their benefits to direct operating costs. In Deutscher Luft- Und Raumfahtkongress. Aachen, Germany.

Granda, E., Sznajderman, L., Di Bernardi, A., & Coppa, M. (2021). Desarrollo metodológico para la incorporación de vehículos eléctricos de asistencia a las aeronaves (eGSE) y su aplicación en el aeropuerto de Ezeiza (SAEZ) (Working Paper). Research Gate.

Grampella, M., Martini, G., Scotti, D., Tassan, F., & Zambon, G. (2017). Determinants of airports’ environmental effects. Transportation Research Part D, 50, 327–344. https://doi.org/10.1016/j.trd.2016.11.007

Ground Power Unit. (2006). Exhaust Emissions at Zurich Airport. GPU Emissions.

Hamel, G., Prahalad, C. K., Ansoff, H. I., Works, L. A., Voss, B., & Dold, L. (2007). Getting ready for the A380 aircraft at Hong Kong international airport. The Art of War, 6(3), 32–117. https://doi.org/10.23943/9781400889877

Hepting, M., Pak, H., Grimme, W., Dahlmann, K., Jung, M., & Wilken, D. (2020). Climate impact of German air traffic: A scenario approach. Transportation Research Part D, 85, 102467. https://doi.org/10.1016/j.trd.2020.102467

Intergovernmental Panel on Climate Change. (2006). IPCC Guidelines for National Greenhouse Gas Inventories – Mobile Combustion, Chapter 3. IPCC.

International Civil Aviation Organization. (2019a). Annex 16 – Environmental Protection, Volume IV – Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA). ICAO. https://doi.org/10.1017/CBO9781107415324.004

International Civil Aviation Organization. (2019b). 2019 environmental report. Aviation and the environment. ICAO.

International Civil Aviation Organization. (2002). Doc 9184: Airport planning manual. http://www.icao.int/environmental-protection/Pages/Caep.aspx

International Civil Aviation Organization. (2017). Annex 16 – Vol III – Aeroplane CO2 Emissions: Vol. III (Issue January). ICAO.

International Civil Aviation Organization. (2007). Airport Air Quality Guidance Manual 9889. ICAO.

International Civil Aviation Organization. (2011). Airport air quality manual (Vol. 1). ICAO.

Jaehn, F., & Neumann, S. (2015). Airplane boarding. European Journal of Operational Research, 244(2), 339–359. https://doi.org/10.1016/j.ejor.2014.12.008

Kazda, A., & Caves, R. E. (2000). Airport design and operation. Emerald Group Publishing Limited.

Malandri, C., Mantecchini, L., & Reis, V. (2019). Aircraft turnaround and industrial actions: How ground handlers’ strikes affect airport airside operational efficiency. Journal of Air Transport Management, 78, 23–32. https://doi.org/10.1016/j.jairtraman.2019.04.007

Martini, G., Scotti, B., & Volta, N. (2013). Including local air pollution in airport efficiency assessment: A hyperbolic-stochastic approach. Transportation Research Part D, 24, 27–36. https://doi.org/10.1016/j.trd.2013.05.002

Ministry for the environment – New Zealand Government. (2019). Measuring emissions: A guide for organisations. Ministry for the Environment.

Mokalled, T., Le Calvé, S., Badaro-Saliba, N., Abboud, M., Zaarour, R., Farah, W., & Adjizian-Gérard, J. (2018). Identifying the impact of Beirut Airport’s activities on local air quality – Part I: Emissions inventory of NO2 and VOCs. Atmospheric Environment, 187, 435–444. https://doi.org/10.1016/j.atmosenv.2018.04.036

Northeast States for Coordinated Air Use Management & Center for Clean Air Policy. (2003). Controlling Airport-Related Air Pollution. NESCAUM & CCAP.

Ntziachristos, L., & Samaras, Z. (2000). COPERT III Computer programme to calculate emissions from road transport. In Technical Report N° 49. European Environment Agency.

Orth, H., Frei, O., & Weidmann, U. (2015). Effects of non-aeronautical activities at airports on the public transport access system: A case study of Zurich Airport. Journal of Air Transport Management, 42, 37–46. https://doi.org/10.1016/j.jairtraman.2014.07.011

Padhra, A. (2018). Emissions from auxiliary power units and ground power units during intraday aircraft turnarounds at European airports. Transportation Research Part D, 63, 433–444. https://doi.org/10.1016/j.trd.2018.06.015

Peace, H., Maughan, J., Owen, B., & Raper, D. (2006). Identifying the contribution of different airport related sources to local urban air quality. Environmental Modelling & Software, 21(4), 532–538. https://doi.org/10.1016/j.envsoft.2004.07.014

Penn, S., Boone, S., Harvey, B., Heiger-Bernays, W., Tripodis, Y., Arunachalam, S., & Levy, J. (2017). Modeling variability in air pollution-related health damages from individual airport emissions. Environmental Research, 156, 791–800. https://doi.org/10.1016/j.envres.2017.04.031

Postorino, M., & Mantecchini, L. (2014). A transport carbon footprint methodology to assess airport carbon emissions. Journal of Air Transport Management, 37, 76–86. https://doi.org/10.1016/j.jairtraman.2014.03.001

Sanchez, D. R. (2009). Analysis of ground handling characteristics of innovative aircraft configurations [Master Thesis, Hamburg University of Applied Sciences]. Germany.

Schmidt, M., Paul, A., Cole, M., & Olaf, K. (2016). Challenges for ground operations arising from aircraft concepts using alternative energy. Journal of Air Transport Management, 56, Part B, 107–117. https://doi.org/10.1016/j.jairtraman.2016.04.023

Song, S., & Shon, Z. (2012). Emissions of greenhouse gases and air pollutants from commercial aircraft at international airports in Korea. Atmospheric Environment, 61, 148–158. https://doi.org/10.1016/j.atmosenv.2012.07.035

Stettler, M. E. J., Eastham, S., & Barrett, S. R. H. (2011). Air quality and public health impacts of UK airports. Part I: Emissions. Atmospheric Environment, 45(31), 5415–5424. https://doi.org/10.1016/j.atmosenv.2011.07.012

Sznajderman, L., Coppa, M., Ramírez-Díaz, G., Di Bernardi C. A., & Alonso, G. (2018, November 21–23). Cuantificación del aporte contaminante gaseoso producto de las operaciones de GSE en plataforma: metodología según tiempos operativos. In CAIA V – Congreso Argentino de Ingeniería Aeronáutica. Córdoba, Argentina.

Sznajderman, L., Ramírez-Díaz, G., & Di Bernardi, C. A. (2021). Influence of the Apron parking stand management policy on aircraft and Ground Support Equipment (GSE) Gaseous emissions at airports. Aerospace, 8(3), 87. https://doi.org/10.3390/aerospace8030087

Tokuslu, A. (2020). Estimation of aircraft emissions at Georgian international airport. Energy, 206, 118219. https://doi.org/10.1016/j.energy.2020.118219

Trujillo, C. (2017, October 11–13). Análisis del aporte contaminante gaseoso de los GAV en el aeropuerto de Ezeiza. In VII RIDITA – International Congress of the Iberoamerican Air Transportation Research Society. Santiago de Chile, Chile.

U.S. Environmental Protection Agency – Office of Transportation and Air Quality. (2005). User’s Guide for the Final NONROAD2005 Model. Technical Report. United States Environmental Protection Agency (EPA).

U.S. Department of Transportation. (2019). Aviation Environmental Design Tool. AEDT 2d. Washington.

United States Environmental Protection Agency. (2010). Exhaust and crankcase emission factors for nonroad engine modeling – compression-ignition. Technical Report. Washington, United States. EPA.

Upham, P., Thomas, C., Gillingwater, D., & Raper, D. (2003). Environmental capacity and airport operations: Current issues and future prospects. Journal of Air Transport Management, 9(3), 145–152. https://doi.org/10.1016/S0969-6997(02)00078-9

Vicente, S. S. (2010). Ground Handling Simulation with CAST [Master Thesis, Hamburg University of Applied Sciences]. Germany.

Vujovic, D., & Todorovic, N. (2017). An assessment of pollutant emissions due to air traffic at Nikola Tesla International Airport, Belgrade, and the link between local air quality and weather types. Transportation Research Part D, 56, 85–94. https://doi.org/10.1016/j.trd.2017.08.003

Winther, M., Kousgaard, U., Ellermann, T., Massling, A., Nojgaard, J., & Ketzel, M. (2015). Emissions of NOx, particle mass and particle numbers from aircraft main engines, APU’s and handling equipment at Copenhagen Airport. Atmospheric Environment, 100, 218–229. https://doi.org/10.1016/j.atmosenv.2014.10.045

Wu, X., Freese D., Cabrera, A., & Kitch, W. A. (2015). Electric vehicles’ energy consumption measurement and estimation. Transportation Research Part D: Transport and Environment, 34, 52–67. https://doi.org/10.1016/j.trd.2014.10.007

Xu, H., Fu, Q., Yu, Y., Liu, Q., Pan, J., Cheng, J., Wang, Z., & Liu, L. (2020). Quantifying aircraft emissions of Shanghai Pudong International Airport with aircraft ground operational data. Environmental Pollution, 261, 114115. https://doi.org/10.1016/j.envpol.2020.114115

Yang, W. T. (2014). Modeling the materials handling in a container terminal using electronic real-time tracking data. In Proceedings of the 2014 Winter Simulation Conference (pp. 1759–1770). IEEE.

Yang, X., Cheng, S., Lang, J., Xu, R., & Lv, Z. (2018). Characterization of aircraft emissions and air quality impacts of an international airport. Journal of Environmental Sciences, 72, 198–207. https://doi.org/10.1016/j.jes.2018.01.007

Yılmaz, I. (2017). Emissions from passenger aircraft at Kayseri Airport, Turkey. Journal of Air Transport Management, 58, 176–182. https://doi.org/10.1016/j.jairtraman.2016.11.001

Yim, S., Stettler, M., & Barrett, S. R. H. (2012). Air quality and public health impacts of UK airports Part II: Impacts and policy Assessment. Atmospheric Environment, 67, 184–192. https://doi.org/10.1016/j.atmosenv.2012.10.017

Zurich Airport. (2014). Aircraft ground handling emissions – methodology and emission factors Zurich airport. GSE Emissions Methodology.