Analysis of General Aviation fixed-wing aircraft accidents involving inflight loss of control using a state-based approach
Abstract
Inflight loss of control (LOC-I) is a significant cause of General Aviation (GA) fixed-wing aircraft accidents. The United States National Transportation Safety Board’s database provides a rich source of accident data, but conventional analyses of the database yield limited insights to LOC-I. We investigate the causes of 5,726 LOC-I fixed‑wing GA aircraft accidents in the United States in 1999–2008 and 2009–2017 using a state-based modeling approach. The multi-year analysis helps discern changes in causation trends over the last two decades. Our analysis highlights LOC-I causes such as pilot actions and mechanical issues that were not discernible in previous research efforts. The logic rules in the state-based approach help infer missing information from the National Transportation Safety Board (NTSB) accident reports. We inferred that 4.84% (1999–2008) and 7.46% (2009–2017) of LOC-I accidents involved a preflight hazardous aircraft condition. We also inferred that 20.11% (1999–2008) and 19.59% (2009–2017) of LOC-I accidents happened because the aircraft hit an object or terrain. By removing redundant coding and identifying when codes are missing, the state-based approach potentially provides a more consistent way of coding accidents compared to the current coding system.
Keywords:
General Aviation safety, General Aviation accidents, loss of control, accident modeling, NTSB databaseHow to Cite
Share
License
Copyright (c) 2021 The Author(s). Published by Vilnius Gediminas Technical University.
This work is licensed under a Creative Commons Attribution 4.0 International License.
References
Aguiar, M., Stolzer, A., & Boyd, D. D. (2017). Rates and causes of accidents for general aviation aircraft operating in a mountainous and high elevation terrain environment. Accident Analysis and Prevention, 107, 195–201. https://doi.org/10.1016/j.aap.2017.03.017
Aircraft Owners and Pilots Association. (2018). 27th Joseph T. Nall report: General aviation accidents in 2015. AOPA. https://www.aopa.org/-/media/files/aopa/home/training-and-safety/nall-report/27thnallreport2018.pdf?la=en&hash=C52F88B38FD95CB7C0A43F3B587A12E2692A8502
Ancel, E., & Shih, A. (2012, September). The analysis of the contribution of human factors to the in-flight loss of control accidents. In 12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference (p. 5548). Indianapolis, Indiana. https://doi.org/10.2514/6.2012-5548
Ancel, E., Shih, A. T., Jones, S. M., Reveley, M. S., Luxhøj, J. T., & Evans, J. K. (2015). Predictive safety analytics: Inferring aviation accident shaping factors and causation. Journal of Risk Research, 18(4), 428–451. https://doi.org/10.1080/13669877.2014.896402
Ayra, E. S., Ríos Insua, D., & Cano, J. (2019). Bayesian network for managing runway overruns in aviation safety. Journal of Aerospace Information Systems, 16(12), 546–558. https://doi.org/10.2514/1.I010726
Ballard, S.-B., Beaty, L. P., & Baker, S. P. (2013). US Commercial air tour crashes 2000–2011: Burden, fatal risk factors and FIA Score Validation. Accident Analysis & Prevention, 57, 49–54. https://doi.org/10.1016/j.aap.2013.03.028
Bazargan, M., & Guzhva, V. S. (2007). Factors contributing to fatalities in general aviation. World Review of Intermodal Transportation Research, 1(2), 170–182. https://doi.org/10.1504/WRITR.2007.013949
Boyd, D. (2015). Causes and risk factors for fatal accidents in non-commercial twin engine piston general aviation aircraft. Accident Analysis and Prevention, 77, 113–119. https://doi.org/10.1016/j.aap.2015.01.021
Boyd, D. D., & Stolzer, A. (2016). Accident-precipitating factors for crashes in turbine-powered general aviation aircraft. Accident Analysis & Prevention, 86, 209–216. https://doi.org/10.1016/j.aap.2015.10.024
Federal Aviation Administration. (2019). Fly Safe: Prevent loss of control accidents. FAA. https://www.faa.gov/newsroom/flysafe-prevent-loss-control-accidents-34?newsId=94566
Franza, A., & Fanjoy, R. (2012). Contributing factors in Piper PA28 and cirrus SR20 aircraft accidents. Journal of Aviation Technology and Engineering, 1(22), 90–96. https://doi.org/10.5703/1288284314662
Fultz, A. J., & Ashley, W. S. (2016). Fatal weather-related general aviation accidents in the United States. Physical Geography, 37(5), 291–312. https://doi.org/10.1080/02723646.2016.1211854
General Aviation Joint Steering Committee. (2016). GAJSC Pareto. GAJSC. https://www.gajsc.org/2016/01/ga-safety-performance-fy16/pareto/
Goldman, S. M., Fiedler, E. R., & King, R. E. (2002). General aviation maintenance-related accidents: A review of ten years (1988–1997) of NTSB Data. DOT/FAA/AM-02/23. Office of Aerospace Medicine, Washington. https://www.faa.gov/data_research/research/med_humanfacs/oamtechreports/2000s/media/0223.pdf
Houston, S. J., Walton, R. O., & Conway, B. A. (2012). Analysis of General Aviation instructional loss of control accidents. The Journal of Aviation/Aerospace Education and Research, 22(1), 35–49. https://doi.org/10.15394/jaaer.2012.1402
National Transportation Safety Board. (1998). Aviation Coding Manual. Washington DC, National Transportation Safety Board. NTSB. https://www.ntsb.gov/GILS/Documents/codman.pdf
National Transportation Safety Board. (2019a). Aviation accident database & synopses. NTSB. https://www.ntsb.gov/_layouts/ntsb.aviation/index.aspx
National Transportation Safety Board. (2019b). Government Information Locator Service (GILS): Aviation accident database. NTSB. https://www.ntsb.gov/GILS/Pages/AviationAccident.aspx
Rao, A. H. (2016). A new approach to modeling aviation accidents [Doctoral dissertation, Purdue University, USA]. https://docs.lib.purdue.edu/open_access_dissertations/993
Rao, A. H., & Marais, K. (2015). Identifying high-risk occurrence chains in helicopter operations from accident data. In 15th AIAA Aviation Technology, Integration, and Operations Conference (p. 2848). American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2015-2848
Rao, A. H., Fala, N., & Marais, K. (2016). Analysis of helicopter maintenance risk from accident data. In AIAA Infotech @ Aerospace (p. 2135). American Institute of Aeronautics and Astronautics. https://doi.org/10.2514/6.2016-2135
Rao, A. H., & Marais, K. (2020). A state-based approach to modeling general aviation accidents. Reliability Engineering and System Safety, 193, 106670. https://doi.org/10.1016/j.ress.2019.106670
Sorenson, D. & Marais, K. (2016). Patterns of causation in accidents and other systems engineering failures. In IEEE Systems Conference. IEEE, Orlando, FL. https://doi.org/10.1109/SYSCON.2016.7490568
Ud-Din, S., & Yoon, Y. (2018). Analysis of loss of control parameters for aircraft maneuvering in general aviation. Journal of Advanced Transportation, 2018, 7865362. https://doi.org/10.1155/2018/7865362
Uğurlu, Ö., Yıldız, S., Loughney, S., Wang, J., Kuntchulia, S., & Sharabidze, I. (2020). Analyzing collision, grounding, and sinking accidents occurring in the Black Sea utilizing HFACS and Bayesian networks. Risk Analysis, 40(12), 2610–2638. https://doi.org/10.1111/risa.13568
Wiegmann, D., Faaborg, T., Boquet, A., Detwiler, C., Holcomb, K., & Shappell, S. (2005). Human error and general aviation accidents: A comprehensive, fine-grained analysis using HFACS. Office of Aerospace Medicine, Washington, DC. https://apps.dtic.mil/dtic/tr/fulltext/u2/a460866.pdf
Xiao, Q., Luo, F., & Li, Y. (2020). Risk assessment of seaplane operation safety using Bayesian network. Symmetry, 12(6), 888. https://doi.org/10.3390/sym12060888
Published
Issue
Section
Copyright
Copyright (c) 2021 The Author(s). Published by Vilnius Gediminas Technical University.
License
This work is licensed under a Creative Commons Attribution 4.0 International License.