Share:


Analytical expression for uncertainty propagation of aerial cooperative navigation

    Ali Faghihinia Affiliation
    ; M. A. Amiri Atashgah Affiliation
    ; S. M. Mehdi Dehghan Affiliation

Abstract

In this paper, the propagation of uncertainty in a cooperative navigation algorithm (CNA) for a group of flying robots (FRs) is investigated. Each FR is equipped with an inertial measurement unit (IMU) and range-bearing sensors to measure the relative distance and bearing angles between the agents. In this regard, an extended Kalman filter (EKF) is implemented to estimate the position and rotation angles of all the agents. For further studies, a relaxed analytical performance index through a closed-form solution is derived. Moreover, the effects of the sensors noise covariance and the number of FRs on the growth rate of the position error covariance is investigated. Analytically, it is shown that the covariance of position error in the vehicles equipped with the IMU is proportional to the cube of time. However, the growth rate of the navigation error is, considerably more rapid compared to a mobile robot group. Furthermore, the covariance of position error is independent of the path and noise resulting from the relative position measurements. Further, it merely depends on both the size of the group and noise characteristics of the accelerometers. Lastly, the analytical results are validated through comprehensive Guidance, Navigation, and Control (GNC) in-the-loop simulations.

Keyword : closed-form solution, cooperative navigation, flying robots, inertial navigation, performance analysis

How to Cite
Faghihinia, A., Amiri Atashgah, M. A., & Dehghan, S. M. M. (2021). Analytical expression for uncertainty propagation of aerial cooperative navigation. Aviation, 25(1), 10-21. https://doi.org/10.3846/aviation.2021.13420
Published in Issue
Apr 2, 2021
Abstract Views
444
PDF Downloads
359
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Bahr, A., Walter, M. R., & Leonard, J. J. (2009). Consistent cooperative localization. In Proceedings – IEEE International Conference on Robotics and Automation, 3415–3422. https://doi.org/10.1109/ROBOT.2009.5152859

Bayat, M., & Atashgah, M. A. (2017). An augmented strapdown inertial navigation system using jerk and jounce of motion for a flying robot. The Journal of Navigation, 70(4), 907–926. https://doi.org/10.1017/S0373463317000017

Chakraborty, A., Sharma, R., & Brink, K. M. (2019). Cooperative localization for multirotor unmanned aerial vehicles. In AIAA Scitech 2019 Forum, (January), 1–19. https://doi.org/10.2514/6.2019-0684

Chakraborty, A., Taylor, C. N., Sharma, R., & Brink, K. M. (2016). Cooperative localization for fixed wing unmanned aerial vehicles. In Proceedings of the IEEE/ION Position, Location and Navigation Symposium, PLANS 2016, 106–117. https://doi.org/10.1109/PLANS.2016.7479689

Enayatollahi, F., & Atashgah, M. A. A. (2018). Wind effect analysis on air traffic congestion in terminal area via cellular automata. Aviation, 22(3), 102–114. https://doi.org/10.3846/aviation.2018.6252

Gao, R., & Chitre, M. (2010). Cooperative positioning using range-only measurements between two AUVs. In OCEANS’10 IEEE, OCEANSSYD 2010. Sydney. https://doi.org/10.1109/OCEANSSYD.2010.5603615

Goel, S., Kealy, A., Gikas, V., Retscher, G., Toth, C., Brzezinska, D. G., & Lohani, B. (2017). Cooperative localization of unmanned aerial vehicles using GNSS, MEMS inertial, and UWB sensors. Journal of Surveying Engineering, 143(4), 4017007. https://doi.org/10.1061/(ASCE)SU.1943-5428.0000230

Goel, S., Kealy, A., & Lohani, B. (2016). Cooperative UAS localization using lowcost sensors. In ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences, III–1(July), 183–190. https://doi.org/10.5194/isprsannals-III-1-183-2016

Kemsaram, N., Thatiparti, V. R. K., Guntupalli, D. R., & Kuvvarapu, A. (2017). Design and development of an on-board autonomous visual tracking system for unmanned aerial vehicles. Aviation, 21(3), 83–91. https://doi.org/10.3846/16487788.2017.1378265

Koifman, M., & Bar-Itzhack, I. Y. (1999). Inertial navigation system aided by aircraft dynamics. IEEE Transactions on Control Systems Technology, 7(4), 487–493. https://doi.org/10.1109/87.772164

Kurazume, R., Nagata, S., & Hirose, S. (1994, May). Cooperative positioning with multiple robots. In Proceedings of the 1994 IEEE International Conference on Robotics and Automation, 1250–1257. https://doi.org/10.1109/ROBOT.1994.351315

Lee, C.-Y. (2020). Cooperative drone positioning measuring in internet-of-drones [Conference presentation]. 2020 IEEE 17th Annual Consumer Communications & Networking Conference (CCNC), 1–3. IEEE. https://doi.org/10.1109/CCNC46108.2020.9045111

Martinelli, A., Pont, F., & Siegwart, R. (2005). Multi-robot localization using relative observations. In Proceedings – IEEE International Conference on Robotics and Automation, 2005(April), 2797–2802. https://doi.org/10.1109/ROBOT.2005.1570537

Martinelli, A., & Siegwart, R. (2005). Observability analysis for mobile robot localization [Conference presentation]. 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, 1264–1269. https://doi.org/10.1109/IROS.2005.1545153

Mourikis, A. I., Member, S., & Roumeliotis, S. I. (2006). Performance Analysis of Multirobot Cooperative Localization. 22(4), 666–681. https://doi.org/10.1109/TRO.2006.878957

Rekleitis, I. M., & Roumeliotis, S. I. (2003). Analytical expressions for positioning uncertainty propagation in networks of robots [Conference presentation]. IEEE Mediterranean Conference on Control and Automation, 131–136.

Rekleitis, I. M., Dudek, G., & Milios, E. E. (2002). Multi-robot cooperative localization: A study of trade-offs between efficiency and accuracy [Conference presentation]. IEEE International Conference on Intelligent Robots and Systems, 3, 2690–2695. https://doi.org/10.1109/IRDS.2002.1041676

Roumeliotis, S. I., & Bekey, G. A. (2000). Distributed multi-robot localization. In Distributed autonomous robotic systems 4 (pp. 179–188). Springer. https://doi.org/10.1007/978-4-431-67919-6_17

Roumeliotis, S. I., & Rekleitis, I. M. (2003). Analysis of multirobot localization uncertainty propagation [Conference presentation]. IEEE International Conference on Intelligent Robots and Systems, 2, 1763–1770. https://doi.org/10.1109/IROS.2003.1248899

Ryan, A., Zennaro, M., Howell, A., Sengupta, R., & Hedrick, J. K. (2004). An overview of emerging results in cooperative UAV control [Conference presentation]. 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No. 04CH37601), 1, 602–607. IEEE. https://doi.org/10.1109/CDC.2004.1428700

Sharma, R., Beard, R. W., Taylor, C. N., & Quebe, S. (2012). Graph-based observability analysis of bearing-only cooperative localization. IEEE Transactions on Robotics, 28(2), 522–529. https://doi.org/10.1109/TRO.2011.2172699

Sharma, R., Quebe, S., Beard, R. W., & Taylor, C. N. (2013). Bearing-only cooperative localization. Journal of Intelligent & Robotic Systems, 72(3–4), 429–440. https://doi.org/10.1007/s10846-012-9809-z

Sharma, R., & Taylor, C. (2008). Cooperative navigation of MAVs in GPS denied areas [Conference presentation]. IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, (4), 481–486. https://doi.org/10.1109/MFI.2008.4648041

Sharma, R., & Taylor, C. N. (2009). Vision based distributed cooperative navigation for MAVs in GPS denied areas [Conference presentation]. AIAA Infotech at Aerospace Conference and Exhibit and AIAA Unmanned...Unlimited Conference, (April). https://doi.org/10.2514/6.2009-1932

Shin, E.-H., & El-Sheimy, N. (2001). Accuracy improvement of low cost INS/GPS for land applications. Graduate Studies.

Simon, D. (2006). Optimal state estimation: Kalman, H infinity, and nonlinear approaches. John Wiley & Sons. https://doi.org/10.1002/0470045345

Sullivan, N., Grainger, S., & Cazzolato, B. (2018). Analysis of cooperative localisation performance under varying sensor qualities and communication rates. Robotics and Autonomous Systems, 110, 73–84. https://doi.org/10.1016/j.robot.2018.09.010

Titterton, D., & Weston, J. (2004). Strapdown inertial navigation technology. In Strapdown Inertial Navigation Technology, 17. https://doi.org/10.1049/PBRA017E

Wanasinghe, T. R., Mann, G. K. I., & Gosine, R. G. (2016). Decentralized cooperative localization approach for autonomous multirobot systems. Journal of Robotics, 2016. https://doi.org/10.1155/2016/2560573