Share:


Progressive failure analysis of helicopter rotor blade under aeroelastic loading

Abstract

Unlike metal structure, composite structures don’t give any clue till the fatal final collapse. The problem is more complicated when applied load on the structure is aeroelastic in nature. Under such loading, composite laminate experiences stresses. The first layer failure happens when stresses in the weakest ply exceed the allowable strength of the laminate. This initial layer-based failure changes overall material characteristics. It is important now to degrade the composite laminate characteristics for the subsequent failure prediction. The constitutive relations are required to be updated by the reduction in stiffness. The rest of the undamaged laminates continue to take the load till the updated strength is reached. In the present work, layer wise progressive failure analysis under aeroelastic loading has been performed by the inclusion of different failure criteria which allow for the identification of the location of the failure. ANSYS APDL environment has been used to model geometry of helicopter rotor. Under the loading conditions, stresses are calculated in the blade. Using stress tensor and failure criteria, failure location and modes have been predicted. It has been found that failure starts at higher speeds and failure starts from the root chord and tend towards the tip chord.

Keyword : progressive failure, aeroelastic loading, helicopter rotor blade, finite element method, mode shape

How to Cite
Ahmad, K., Baig, Y., Rahman, H., & Hasham, H. J. (2020). Progressive failure analysis of helicopter rotor blade under aeroelastic loading. Aviation, 24(1), 33-41. https://doi.org/10.3846/aviation.2020.12184
Published in Issue
Apr 23, 2020
Abstract Views
1486
PDF Downloads
845
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

References

Adolfsson, E., & Gudmundson, P. (1997). Thermoelastic properties in combined bending and extension of thin composite laminates with transverse matrix cracks. International Journal of Solids and Structures, 34(16), 2035–2060. https://doi.org/10.1016/S0020-7683(96)00156-4

Alkahe, J., & Rand, O. (2000). Analytic extraction of the elastic coupling mechanisms in composite blades. Composite Structures, 49(4), 399–413. https://doi.org/10.1016/S0263-8223(00)00074-X

Alkahe, J., Rand, O., & Oshman, Y. (2003). Helicopter health monitoring using an adaptive estimator. Journal of the American Helicopter Society, 48(3), 199–210. https://doi.org/10.4050/JAHS.48.199

Allen, D. H., Harris, C. E., & Groves, S. E. (1987). A thermo-mechanical constitutive theory for elastic composites with distributed damage-II. Application to matrix cracking in laminated composites. International Journal of Solids and Structures, 23(9), 1319–1338. https://doi.org/10.1016/0020-7683(87)90108-9

Armanios, E. A., Sriram, P., & Badir, A. M. (1991). Fracture analysis of transverse crack-tip and free-edge delamination in laminated composites. In Composite Materials: Fatigue and Fracture (Third Volume). ASTM International.

Azzam, H., & Andrew, M. J. (1992). The use of math-dynamic models to aid the development of integrated health and usage monitoring systems. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 206(1), 71–76. https://doi.org/10.1243/PIME_PROC_1992_206_240_02

Berthelot, J.-M., & Le Corre, J.-F. (2000). A model for transverse cracking and delamination in cross-ply laminates. Composites Science and Technology, 60(7), 1055–1066. https://doi.org/10.1016/S0266-3538(00)00006-3

Cárdenas, D., Elizalde, H., Marzocca, P., Abdi, F., Minnetyan, L., & Probst, O. (2013). Progressive failure analysis of thin-walled composite structures. Composite Structures, 95, 53–62. https://doi.org/10.1016/j.compstruct.2012.05.022

Cattarius, J., & Inman, D. J. (2000). Experimental verification of intelligent fault detection in rotor blades. International Journal of Systems Science, 31(11), 1375–1379. https://doi.org/10.1080/00207720050197767

Dawe, D. J., Lam, S. S. E., & Azizian, Z. G. (1993). Finite strip post-local-buckling analysis of composite prismatic plate structures. Computers & Structures, 48(6), 1011–1023. https://doi.org/10.1016/0045-7949(93)90436-H

Dharani, L. R., & Tang, H. (1990). Micromechanics characterization of sublaminate damage. International Journal of Fracture, 46(2), 123–140. https://doi.org/10.1007/BF00041999

Ganguli, R. (2002). Health monitoring of a helicopter rotor in forward flight using fuzzy logic. AIAA Journal, 40(12), 2373–2381. https://doi.org/10.2514/2.1588

Ghannadpour, S. A. M., Barvaj, A. K., & Tornabene, F. (2018). A semi-analytical investigation on geometric nonlinear and progressive damage behavior of relatively thick laminated plates under lateral pressure and end-shortening. Composite Structures, 194, 598–610. https://doi.org/10.1016/j.compstruct.2018.04.011

Ghannadpour, S. A. M., & Mehrparvar, M. (2018). Energy effect removal technique to model circular/elliptical holes in relatively thick composite plates under in-plane compressive load. Composite Structures, 202, 1032–1041. https://doi.org/10.1016/j.compstruct.2018.05.026

Ghannadpour, S. A. M., & Ovesy, H. R. (2009). The application of an exact finite strip to the buckling of symmetrically laminated composite rectangular plates and prismatic plate structures. Composite Structures, 89(1), 151–158. https://doi.org/10.1016/j.compstruct.2008.07.014

Ghannadpour, S. A. M., Ovesy, H. R., & Zia-Dehkordi, E. (2014). An exact finite strip for the calculation of initial post-buckling stiffness of shear-deformable composite laminated plates. Composite Structures, 108, 504–513. https://doi.org/10.1016/j.compstruct.2013.09.049

Ghannadpour, S. A. M., & Shakeri, M. (2018). Energy based collocation method to predict progressive damage behavior of imperfect composite plates under compression. Latin American Journal of Solids and Structures, 15(4). https://doi.org/10.1590/1679-78254257

Ghannadpour, S. A. M., Shakeri, M., & Barvaj, A. K. (2018). Ultimate strength estimation of composite plates under combined in-plane and lateral pressure loads using two different numerical methods. Steel and Composite Structures, 29(6), 781–798.

Ghannadpour, S. A. M., & Karimi, M. (2018). Domain decomposition technique to simulate crack in nonlinear analysis of initially imperfect laminates. Structural Engineering and Mechanics, 68(5), 603–619.

Ghoshal, A., Harrison, J., Sundaresan, M. J., Hughes, D., & Schulz, M. J. (2001). Damage detection testing on a helicopter flexbeam. Journal of Intelligent Material Systems and Structures, 12(5), 315–330. https://doi.org/10.1106/9V39-ETJU-DNMG-TJUF

Gudmundson, P., & Weilin, Z. (1993). An analytic model for thermoelastic properties of composite laminates containing transverse matrix cracks. International Journal of Solids and Structures, 30(23), 3211–3231. https://doi.org/10.1016/0020-7683(93)90110-S

Kiddy, J., & Pines, D. (2001). Experimental validation of a damage detection technique for helicopter main rotor blades. Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, 215(3), 209–220. https://doi.org/10.1243/0959651011540996

Mehrparvar, M., & Ghannadpour, S. A. M. (2018). Plate assembly technique for nonlinear analysis of relatively thick functionally graded plates containing rectangular holes subjected to in-plane compressive load. Composite Structures, 202, 867–880. https://doi.org/10.1016/j.compstruct.2018.04.053

Morozov, E. V., Sylantiev, S. A., & Evseev, E. G. (2003). Impact damage tolerance of laminated composite helicopter blades. Composite Structures, 62(3), 367–371. https://doi.org/10.1016/j.compstruct.2003.09.034

Nairn, J. A., & Hu, S. (1992). The initiation and growth of delaminations induced by matrix microcracks in laminated composites. International Journal of Fracture, 57(1), 1–24. https://doi.org/10.1007/BF00013005

Obrien, T. K. (1991). Residual thermal and moisture influences on the strain energy release rate analysis of local delaminations from matrix cracks. National Aeronatics and Space Administration NASA.

Oktay, T., & Sal, F. (2015). Helicopter control energy reduction using moving horizontal tail. The Scientific World Journal, 2015. https://doi.org/10.1155/2015/523914

Oktay, T., & Sal, F. (2016). Combined passive and active helicopter main rotor morphing for helicopter energy save. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 38(6), 1511–1525. https://doi.org/10.1007/s40430-015-0401-x

Oktay, T., & Sultan, C. (2013). Constrained predictive control of helicopters. Aircraft Engineering and Aerospace Technology. https://doi.org/10.1108/00022661311294021

Ovesy, H. R., & Ghannadpour, S. A. M. (2006). Geometric non-linear analysis of imperfect composite laminated plates, under end shortening and pressure loading, using finite strip method. Composite Structures, 75(1–4), 100–105. https://doi.org/10.1016/j.compstruct.2006.04.005

Ovesy, H. R., Ghannadpour, S. A. M., & Morada, G. (2006). Post-buckling behavior of composite laminated plates under end shortening and pressure loading, using two versions of finite strip method. Composite Structures, 75(1–4), 106–113. https://doi.org/10.1016/j.compstruct.2006.04.006

Ovesy, H. R., Totounferoush, A., & Ghannadpour, S. A. M. (2015). Dynamic buckling analysis of delaminated composite plates using semi-analytical finite strip method. Journal of Sound and Vibration, 343, 131–143. https://doi.org/10.1016/j.jsv.2015.01.003

Ovesy, H. R., Ghannadpour, S. A. M., & Zia-Dehkordi, E. (2013). Buckling analysis of moderately thick composite plates and plate structures using an exact finite strip. Composite Structures, 95, 697–704. https://doi.org/10.1016/j.compstruct.2012.08.009

Pawar, P. M., & Ganguli, R. (2003). Genetic fuzzy system for damage detection in beams and helicopter rotor blades. Computer Methods in Applied Mechanics and Engineering, 192(16), 2031–2057. https://doi.org/10.1016/S0045-7825(03)00237-8

Pawar, P. M., & Ganguli, R. (2005). On the effect of matrix cracks in composite helicopter rotor blade. Composites Science and Technology, 65(3), 581–594. https://doi.org/10.1016/j.compscitech.2004.09.021

Pawar, P. M., & Ganguli, R. (2006). Modeling progressive damage accumulation in thin walled composite beams for rotor blade applications. Composites Science and Technology, 66(13), 2337–2349. https://doi.org/10.1016/j.compscitech.2005.11.033

Pawar, P. M., & Ganguli, R. (2007). On the effect of progressive damage on composite helicopter rotor system behavior. Composite Structures, 78(3), 410–423. https://doi.org/10.1016/j.compstruct.2005.11.043

Salpekar, S. A., & O’Brien, T. K. (1991). Combined effect of matrix cracking and free edge on delamination. In Composite Materials: Fatigue and Fracture (Third Volume). ASTM International.

Shahid, I., & Chang, F.-K. (1995). An accumulative damage model for tensile and shear failures of laminated composite plates. Journal of Composite Materials, 29(7), 926–981. https://doi.org/10.1177/002199839502900705

Tserpes, K. I., Labeas, G., Papanikos, P., & Kermanidis, T. (2002). Strength prediction of bolted joints in graphite/epoxy composite laminates. Composites Part B: Engineering, 33(7), 521–529. https://doi.org/10.1016/S1359-8368(02)00033-1