Aspects of complexity of metal-fibrous microstructure for the construction of high-performance heat exchangers: thermal properties

    Łukasz J. Orman   Affiliation


The paper considers the application of metal – fibrous microstructures in the development of highly efficient heat exchangers. Such structures can be successfully used in air conditioning systems of modern planes or in heat pipes located in planes and spacecraft. Copper fibers of 50 mm diameter have been used to produce coatings of different volumetric porosity. The sintering process was used to produce the samples. Pool boiling heat transfer tests have been performed on the non – isothermal surfaces of the fin with distilled water and ethyl alcohol (99.8% purity) as boiling agents. A significant enhancement of heat transfer has been recorded with the use of the metal – fibrous microstructures in comparison to the smooth surface without any coating. The enhancement proved to vary considerably depending on the superheat value.

Keyword : aircraft anti-icing, boiling heat transfer, enhancement, heat pipes, metal – fibrous microstructures

How to Cite
Orman, Łukasz J. . (2020). Aspects of complexity of metal-fibrous microstructure for the construction of high-performance heat exchangers: thermal properties. Aviation, 24(3), 99-104.
Published in Issue
Sep 10, 2020
Abstract Views
PDF Downloads
Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.


Chatys, R. (2009). Modeling of adhesive strength of fiber - reinforced polymer-matrix composite materials. In Proceedings of International Conference Transport Means (pp. 112–115). Lithuania.

Chatys, R., Malcho, M., & Orman, Ł. J. (2014). Heat transfer enhancement in phase-change heat exchangers. Aviation, 18(1), 40–43.

Chatys, R., & Orzechowski, T. (2004). Surface extension in layered structures with the use of metal meshes for heat-transfer enhancement. Mechanics of Composite Materials, 40(2), 159–168.

Fridrikhson, Yu. V., Kravets, V. Yu., & Semena, M. G. (1994). Calculation of the density of active nucleation sites in the boiling of liquids on metal – fibrous capillary – porous structures. Journal of Engineering Physics and Thermophysics, 66(5), 534–540.

Kalawa, W., Wójcik, T. M., & Piasecka, M. (2017). Heat transfer research on enhanced heating surfaces in pool boiling. In Proceedings of International Conference Experimental Fluid Mechanics 2016, Mariánskè Lázně, EPJ Web of Conferences, 143, 02048. Czech Republic.

Li, C., Peterson, G. P., & Wang, Y. (2006). Evaporation/boiling in thin capillary wicks (I) – wick thickness effects. Journal of Heat Transfer, 128, 1312–1319.

Li, C. & Peterson, G. P. (2006). Evaporation/boiling in thin capillary wicks (II) – effects of volumetric porosity and mesh size. Journal of Heat Transfer, 128, 1320–1328.

Orzechowski, T. (2003). Wymiana ciepła przy wrzeniu na żebrach z mikropowierzchnią strukturalną, Kielce, Wydawnictwo Politechniki Świętokrzyskiej (in Polish).

Orzechowski, T., & Orman, Ł. J. (2006). Boiling heat transfer on surfaces covered with copper fibrous microstructures, In Proceedings of XI International Conference Heat Transfer and Renewable Sources of Energy (pp. 613–619). Szczecin, Poland.

Pioro, I. L. (1999). Experimental evaluation of constants for the Rohsenow pool boiling correlation. International Journal of Heat and Mass Transfer, 42, 2003–2013.

Poniewski, M. E. (2001). Wrzenie pęcherzykowe na rozwiniętych mikropowierzchniach. Kielce, Wydawnictwo Politechniki Świętokrzyskiej (in Polish).

Rohsenow, W. M. (1952). A method of correlating heat transfer data for surface boiling of liquids. Transactions of American Society of Mechanical Engineers, 74, 969–975.

Shukla, K. N. (2015). Heat pipe for aerospace applications — an overview, Journal of Electronics Cooling and Thermal Control, 5, 1–14.

Stephan, K., & Abdelsalam, M. (1980). Heat transfer correlations for natural convection boiling, International Journal Heat and Mass Transfer, 23, 73–87.

Su, Q., Chang, S., Zhao, Y., Zheng, H. & Dang C. (2018) A review of loop heat pipes for aircraft anti-icing applications, Applied Thermal Engineering, 130, 528–540.

Wójcik, T. M. (2004). Boiling on cylindrical surfaces with thick-layered porous covering. In Proceedings of X Int. Symposium Heat Transfer and Renewable Sources of Energy (pp. 653–660). Szczecin – Miedzyzdroje, Poland.

Wójcik, T. M. (2009). Experimental investigations of boiling heat transfer hysteresis on sintered, metal – fibrous, porous structures. Experimental Thermal and Fluid Science, 33(3), 397–404.

Wójcik, T. M. (2005). Pool boiling heat transfer on horizontal tubes with metal, fibrous porous coverings. In Proceedings of 4th International Conference on Transport Phenomena in Multiphase Systems HEAT2005 (pp. 535–542). Gdańsk, Poland.

Zaripov, V. K., Semena, M. G., Shapoval A. A., & Levterov, A. I. (1989). Heat-transfer rate in boiling at a surface with porous coatings in conditions of free motion. Journal of Engineering Physics, 57(2), 859–863.

Zhao, X., & Zhang, H. (1988). Experimental study of pool boiling heat transfer from powder porous surface at higher heat fluxes. In Advances in Phase Change Heat Transfer (pp. 236–241). International Academic Press, China.

Xin, M.-D., & Chao, Y.-D. (1987). Analysis and experiment of boiling heat transfer on T-shaped finned surfaces. Chemical Engineering Communications, 50(1–6), 185–199.