Calderón-Zygmund estimates for Schrödinger equations revisited

    Le Xuan Truong Info
    Nguyen Ngoc Trong Info
    Tan Duc Do Info

Abstract

We establish a global Calderón-Zygmund estimate for a quasilinear elliptic equation with a potential. If the potential has a reverse Hölder property, then the estimate was known in [6]. In this note, we observe that the estimate remains valid when the potential is merely Lebesgue integrable. Our proof is short and elementary.

Keywords:

Calderón-Zygmund estimates, quasilinear Schrödinger equation

How to Cite

Truong, L. X., Trong, N. N., & Do, T. D. (2025). Calderón-Zygmund estimates for Schrödinger equations revisited. Mathematical Modelling and Analysis, 30(2), 224–232. https://doi.org/10.3846/mma.2025.21702

Share

Published in Issue
April 18, 2025
Abstract Views
140

References

B. Bongioanni, E. Harboure and O. Salinas. Commutators of Riesz transforms related to Schrödinger operators. J. Fourier Anal. Appl., 17(1):115–134, 2011. https://doi.org/10.1007/s00041-010-9133-6"> https://doi.org/10.1007/s00041-010-9133-6

M. Bramanti, L. Brandolini, E. Harboure and B. Viviani. Global W2,p estimates for nondivergence elliptic operators with potentials satisfying a reverse Hölder condition. Annali di Matematica, 191(2):339–362, 2012. https://doi.org/10.1007/s10231-011-0186-1"> https://doi.org/10.1007/s10231-011-0186-1

T.D. Do, L.X. Truong and N.N. Trong. Global Hessian estimates in Musielak-Orlicz spaces for a Schrödinger equation. Michigan Math. J., Advance Publication, pp. 1–15, 2024. https://doi.org/10.1307/mmj/20236341"> https://doi.org/10.1307/mmj/20236341

W. Gao and Y. Jiang. Lp estimate for parabolic Schrödinger operator with certain potentials. J. Math. Anal. Appl., 310(1):128–143, 2005. https://doi.org/10.1016/j.jmaa.2005.01.049"> https://doi.org/10.1016/j.jmaa.2005.01.049

M. Lee and J. Ok. Nonlinear Calderón-Zygmund theory involving dual data. Rev. Mat. Iberoamericana, 35(4):1053–1078, 2019. https://doi.org/10.4171/RMI/1078"> https://doi.org/10.4171/RMI/1078

M. Lee and J. Ok. Interior and boundary W1,q-estimates for quasi-linear elliptic equations of Schrödinger type. J. Differential Equations, 269(5):4406–4439, 2020. https://doi.org/10.1016/j.jde.2020.03.028"> https://doi.org/10.1016/j.jde.2020.03.028

G. Pan and L. Tang. Solvability for Schrödinger equations with discontinuous coefficients. J. Funct. Anal., 270(1):88–133, 2016. https://doi.org/10.1016/j.jfa.2015.10.004"> https://doi.org/10.1016/j.jfa.2015.10.004

Z. Shen. Lp estimates for Schrödinger operators with certain potentials. Annales de l’Institut Fourier, 45(2):513–546, 1995. https://doi.org/10.5802/aif.1463"> https://doi.org/10.5802/aif.1463

N.N. Trong, L.X. Truong and T.D. Do. Calderón–Zygmund estimates for a parabolic Schrödinger system on Reifenberg domains. Math. Methods Appl. Sci., 46(4):3797–3820, 2022. https://doi.org/10.1002/mma.8722"> https://doi.org/10.1002/mma.8722

N.N. Trong, L.X. Truong and T.D. Do. Higher-order parabolic Schrödinger operators on Lebesgue spaces. Mediterr. J. Math., 19:181, 2022. https://doi.org/10.1007/s00009-022-02082-7"> https://doi.org/10.1007/s00009-022-02082-7

N.N. Trong, L.X. Truong, T.D. Do and T.P.T. Lam. Optimal estimates in Musielak-Orlicz spaces for a parabolic Schrödinger equation. Math. Inequal. Appl., 27(4):909–927, 2024. https://doi.org/10.7153/mia-2024-27-61"> https://doi.org/10.7153/mia-2024-27-61

View article in other formats

CrossMark check

CrossMark logo

Published

2025-04-18

Issue

Section

Articles

How to Cite

Truong, L. X., Trong, N. N., & Do, T. D. (2025). Calderón-Zygmund estimates for Schrödinger equations revisited. Mathematical Modelling and Analysis, 30(2), 224–232. https://doi.org/10.3846/mma.2025.21702

Share