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1 Introduction

This paper targets the equation

—divA(z,Vu) + V [ulP72u = —div(|F|P72 F) in (2, )
1.1
u=20 on 012,

in which the following structural conditions are imposed:

en € {2,3,4,...}, p € (1,00) and 2 C R™ is an open bounded domain
that is (g, ro)-Reifenberg flat and at the same time (do, ro)-vanishing for
some small constants g, rg > 0. See Definitions 2 and 3 below.

e A:R" x R"™ — R" is a Carathédory function, in the sense that A is
measurable in the first variable and differentiable in the second variable.
Moreover, there exist constants 0 < Ay < A; < oo such that

VeA(z,&)n-n> Ao €72 |nf

Copyright (©) 2025 The Author(s). Published by Vilnius Gediminas Technical University

This is an Open Access article distributed under the terms of the Creative Commons Attribution License
(https:/ /creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduc-
tion in any medium, provided the original author and source are credited.


https://ror.org/02x3e4q36
https://journals.vilniustech.lt/index.php/MMA
https://doi.org/10.3846/mma.2025.21702
https://orcid.org/0000-0003-2328-6235
https://orcid.org/0000-0002-1582-2424
mailto:tandd.am@ueh.edu.vn
https://orcid.org/0000-0001-5913-6613
mailto:tandd.am@ueh.edu.vn
mailto:tandd.am@ueh.edu.vn
https://creativecommons.org/licenses/by/4.0/

Calderon-Zygmund estimates for Schréidinger equations revisited

and
|A(z, )] + |VeA(z, &) |€] < Ay ¢

for a.e. z € R™ and for all £, € R™.
e e LI(2,R") for some q > p.
o V € L7(£2) with

<” > if p <

—n), iIp n,

Y€ p (1.2)
(1,n), if p>n.

The aim is to derive a Calderén-Zygmund estimate for a weak solution to
(1.1). A weak solution to (1.1) is understood as follows:

DEFINITION 1. A function u € Wy P (£2) N LP(2, Vdzx) is called a weak solution
of (1.1) if

/ A(x,Vu)-Vgodx+/ V|u|p’2ug0d9c:/ F-Vodz (1.3)
2 7 2
for all o € W P(£2) N LP(£2, Vdzx), where
LP(2,Vdx) := {measurable function g : 2 — R.: / lg|P V dx < oo} .
2

If the potential V' is non-negative and belongs to a reverse Holder class B,
in the sense that

1 1
sup <][ de) <][ | dm) < 00,
B B

where ~ is given by (1.2) and the supremum is taken over all balls B C R",
then [6, Corollary 2.6] established the global Calderén-Zygmund estimate

1
IVullLa@) + Ligenp) IVP ullLay S [1F L) (1.4)

for all p < ¢ < *(p—1), where

n
1, ifg< T ify<n,
Tiganp =94 4 r}_/p’ and Y=g n—y (1.5)
0, otherwise 00, otherwise.

In this note, we show that the condition V' € B?Y can be removed, and yet
(1.4) remains valid. In fact, our aforementioned structural conditions require
V € L7(£2) only. Unlike [6], we make no use of the uniform estimate [6, Lemma
3.5] which is crucial in their consideration. Moreover, our proof is short and
elementary.

The first regularity estimates of type (1.4) can be traced back to the work [8].
Specifically, [8, Corollary 0.10] asserts that a weak solution u to the Schrédinger
equation

—Au+Vu=—-divF inR"

Math. Model. Anal., 30(2):224-232, 2025.


https://doi.org/10.3846/mma.2025.21702

226 L.X. Truong, N.N. Trong and T.D. Do

satisfies

1 * *
IVull Logny +Lige2y) 1VZ ullparny S I1Fllarny  for all g € [(v*),7*] \ {oo},

where V' € B with v > %. Moreover, this range for ¢ is optimal (cf. [8, Section
7).

Further extensions are available in [1,2,3,7] for elliptic equations with dis-
continuous coefficients and in [4,9,10,11] for parabolic Schrodinger equations.

Before stating our main result, we provide the notions of (dy, ro)-Reifenberg
flat and (dg, ro)-vanishing domains required by the structural conditions.
DEFINITION 2. Let §p € (0, %) and 79 > 0. Then 2 is called a (dg,70)-
Reifenberg flat domain if for all z € 962 and r € (0,r¢], there exists a new
coordinate system {yi,...,y,} in which z is the origin and

B.(0)N{y, >dor} C B-(0)N2 C B.(0)N{y, > g7}

DEFINITION 3. Let dg, 79 > 0. We say that A is (dp, ro)-vanishing if

sup ][ O[A, B.(2)](y) dy < b
B, (x)

0<r<ro
rER™

for all » € (0,7¢), where

OA By (2)](y) i= sup g

Ap,()(§) 1=][ A(y, ) dy.

B, (x)

With these in mind, the global Calderén-Zygmund estimate is formulated
as follows.

Theorem 1. Assume the structural conditions. Let u be a weak solution to
(1.1). Then there ezists a constant 69 = do(n, Ao, A1,p) > 0 such that if 2 is
(00,70)-Reifenberg flat and A is (0g, ro)-vanishing for some o € (0,1), then,

s

1
[Vull a2y + Ligepy V7 ull o) < C ( o

X (”VUHLP(Q) + ||F||Lq(9)> (1.6)

for all g € (p,* (p—1)), where C=C(n, Ao, 41,7, p, |V £2(2)) > 0 and ~*
is given by (1.5).

Two remarks are immediate.

Remark 1. When V' > 0 in Theorem 1, we further derive that

[Vullzr2y < C(p, Ao) | Fllze(2) < Clp, Ap) diam(£2)» 4 1F'l| a2y
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by using u as a test function in (1.3). Consequently, (1.6) can be written more
succinctly as

) o(n_n
dm“”) ( )||F||Lq<m,

1
IVullLa(2) + Lig<py) IV? ull Loy < C ( o
Where C = C(”?‘/lov/ll)’%pa q, ||V||L7(Q)) > 0

Remark 2. If V € B in Theorem 1, then the endpoint case v = % may also be
included due to the self-improving property of this class.

2 Proof of Theorem 1
Given an exponent ¢ € (1, 00), we define

n e if 1l < g <m,
Gy = 7 and gt =< ¢
n+q 0, if g >n,

whence
(@)« =(g:)" =q, forall 1 < ¢ <n.

Our proof of Theorem 1 rests upon the estimate from [5, Corollary 2.5].
Proposition 1. The following statements hold.

(a)  Letp>1ands>max{pn(p—1)/(n—1)}. Assume that
fe L(s/(p_l))*(ﬂ) and FEL*(2). Let u be a weak solution to (1.1).
Then there exists a constant 6o = dg(n, Ao, A1,p) > 0 such that if 2 is
(00, 70)-Reifenberg flat and A is (8o, ro)-vanishing for some ro € (0,1),
diam($2) bs L
L) <C (r) (|f|| (15
0 L p—1

then,
LS(Q)>a
where C = C(n, Ag, A1,p, s) > 0.

(b)y Letp>nandp<s< % and 1 < w < n. Assume that f € L™ (2)
and F € L*(02). Let u be a weak solution to (1.1). Then there exists a
constant &g = do(n, Ao, A1,p) > 0 such that if 2 is (oo, ro)-Reifenberg
flat and A is (0g, 10)-vanishing for some ro € (0,1), then,

diam()\ 7 =D
o < © (222 (11

To

n

IVl

+ (17

)*(Q)

1
1

74l Pty +1Fleco)).

where C = C(n, Ag, A1, p, s,w) > 0.

In Proposition 1, if p < n then,
max{p,n(p— 1)/(n— 1)} =p

Math. Model. Anal., 30(2):224-232, 2025.
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and Part (a) asserts that the global Calderén-Zygmund estimate

_1
IVullzo) S 115, + I1F)

L(0) (2.1)

is valid for all s > p (and suitable t). Whereas, if p > n then Parts (a) and (b)
together ensure that (2.1) is again valid for all s > p (and suitable ¢).

Hereafter, we always assume the structural conditions. The next observa-
tion is also crucial.

Lemma 1. Let u be a weak solution to (1.1).

(i) Let 1 < p < n. Suppose further that |Vu| € L(§2) for some p < s < n.
ot

Then V|u|P=2u € L\"""/+(8), where

ny(p—1)s
n(p—1)y—(py—n)s

st = € (s, (p—1)).

In particular, s is increasing as a function of s with
2

Py =mp >0, lim s* =+*(p—1).

f o
st —s>h:=
n(p— 1)y s—n—

Moreover, there exists a constant C = C(n,~y,p,s) > 0 such that

V1=

=1 1
b S CIVIL (o) IVullLe ()
L(”_l)*(ﬂ) LV(92) (£2)
(i)  Let p > n. Suppose further that p < q < v* (p —1). Then V|u[P=2u €
ACCINT))
Moreover, there exists a constant C = C(n,~,p,q) > 0 such that

1
p—1

1
HV|u|p_1 < CVIIza e IVl o )-

L(%)*(Q)

Proof. (i) One has
1 1 pYy—n
== 2.2
F 5 np-1n 22)

It follows that s is increasing as a function of s. At the same time,
1 1 1 pyY—n n—ry 1

7>7>77 pry = .
s st T n np-1y -1y yp-1)

Equivalently, s < s* < ~v* (p — 1). Still in view of (2.2),

— _ 2
R 4 bl SR R Vo Bk
n(p—1)y n(p—1)y
. 1 1 py—n 1
lim =— — =

son- st n m(p—1)y  y(p-1)
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st B ns
p—1) np-1)+s

and our choice of st guarantees that

v[n(p—1) + s*]

Next,

>1, 2.3
nst (2.3)
—1)st
ny(p—1) = (n=7)s
while u € L™ (£2) due to Sobolev’s embedding theorem. We have
( n(p—1)st
0, [ it i
)iy o
["( 1)+s 1 " ny(p—1)+~s
s(/ |V|Wda:>” " (/ ful® dx) o
o Q

e 1>+a T a1+t
<C(n,7,p,s (/ IVl”dw> (/ Vul® dx)

n(p—1)st
n(p 1>+sﬁ

n sH
=C(n,v,p,s )||VHL£YP(QI)+

by Holder’s inequality and Sobolev’s embedding theorem in the second and
third steps respectively. The claim then follows from this estimate.

(ii) We repeat the arguments in (i) and replace s* with q. The range for ¢
ensures that (2.3) is still valid with g in place of s*, whereas (2.4) is replaced

by
-1
ny(p—1)q P
ny(p—1) = (n —7)q
Furthermore, u € L'(§2) for all ¢t € (1,00) by Sobolev’s embedding theorem.
These enable us to proceed with Holder’s inequality and arrive at the conclusion
as required. O

We are now ready to present the proof of Theorem 1.

Proof of Theorem 1. Let g € (p,v*(p —1)). We divide the proof into two
steps.
Step 1: We show that

diam(02)\ » "¢
Wuluria <€ (P22 (Wuliria) +1Flra) . 29

where C' = C(n, Ao, A1,7,0,¢, |V |lLv(2)) > 0. By virtue of Lemma 1 and
Proposition 1, it suffices to show that (2.5) holds for ¢ < n.

Math. Model. Anal., 30(2):224-232, 2025.
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Let ¢ < n. We consider two cases as follows.

Case 1: Suppose 1 < p < n. By adjusting the step size h in Lemma 1(i)
to a smaller value when necessary, we may assume that ¢ = p + kh for some
k € {1,2,3,...}. Then the first application of Lemma 1(i) with s = p yields
that

L[ -
HV\UV’ L L) o) < C(n, 7, 0) IVIIZS () VUl o (-

In turn, Proposition 1(a) with f = V|u|P~2 u gives

diam({2) [ 1y
IVullLoenia) < C <> (IIVUIP 'l (1) +|F|Lq(m>
L\r=1) ()

To

di 0 »TPiR 1
< <1am()> max{l, VHEVEQ)}

To

X (HVUHLP(Q) + ||F||Lq(n)) ,

where C' = C(n, Ag, A1,7,p) > 0. Iterating this last estimate k = 42 times,
we arrive at

diam(£2) v L o
IVl a2y <C () max{l, |V||mzm}

To

X (HquLP(Q) + ||FHL‘J(Q)) ,

where C' = C(n, Ag, A1,7,p,q) > 0.
Case 2: Suppose p > n. In this case, Lemma 1(ii) tells us that V|u|P~2u €

L<”qj)* (£2). Tt is straightforward to verify that

1< (q/(p—1)), <n.

Hence applying Proposition 1(a) and (b) yields (2.5) immediately.
Step 2: We show that

n_n

N diam(£2)\ ¢ »
|||V|pu||Lq<m£C(ro()> (19l + 1P lznco)

for all ¢ € (p,yp), where C' = C(n,v,p, ¢, |V (2)) > 0.
To this end, it suffices to show that

N 1
|||V|p uHLq(Q) < C(nv%Pa Q) ||V||]1‘:7(_Q) ||quL‘7(Q)
for all ¢ € (p,vp). Let g € (p,vp). Recall that % <7 < n. Therefore,

Ypa/(vp — q) < ¢*.
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At the same time, u € L7 (£2) since |Vu| € L9(£2) by Step 1. Consequently,
Holder’s inequality and Sobolev’s embedding theorem give

/Q(Véu)qug(/nwwdx) (/ |u|wpq> &

S C(”afYapv )||VHL’Y(Q HVUHLQ(Q

as required. The theorem now follows by combining the estimates in Step 1
and Step 2 together. O

3 Concluding remark
Certain interest is also paid to the local version of (1.1) which is given by

—divA(z, Du)+V |u|P~2 u=—div(|F[P72F) in $25,(y):=Ba.(y) N £,

{ u=0 on Bo,.(y) N9 if By.(y) ¢ 12,

(3.1)
where y € 2 and 7 > 0. A weak solution to (3.1) is understood in the sense of
Definition 1 with {2 being replaced by (25,

Using analogous arguments as the above, we may also obtain a Calderén-
Zygmund estimate for a weak solution to (3.1). Indeed, the arguments used
to prove Theorem 1 is almost independent of the global property therein, with
the exception being Proposition 1. The local counterpart of Proposition 1 can
be found in [6, Theorems 2.3 and 2.4]). With this in mind, the local Calderén-
Zygmund estimate can be stated as follows.

Theorem 2. Assume the structural conditions. Let u be a weak solution to
(3.1). Then, there exists a constant 5o = do(n, Ag, A1,p) > 0 such that if §2 is
(00,70)-Reifenberg flat and A is (dg,ro)-vanishing for some o € (0,1), then,

1
”VUHL"(Qrzl—q/p(y)) + Ljgapy IV “HL“(QTzl—q/p(y))

¢ (IIVUIImew(y» + ”F”Lq(()zr(y)))
for all q € (p, ~* (p — 1)), y €82 and r € (0, 2], where

C = C(?’l,/lo,/ll,’)’,p, q, ||V||L7(Q)) >0

and v* is given by (1.5).
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