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Abstract. This paper presents a uniform approach to the modelling and simulation of aircraft prescribed trajectory flight. 
The aircraft motion is specified by a trajectory in space, a condition on airframe attitude with respect to the trajectory, and 
a desired flight velocity variation. For an aircraft controlled by aileron, elevator and rudder deflections and thrust changes 
a tangent realization of trajectory constraints arises which yields two additional constraints on the airframe attitude with 
respect to the trajectory. Combining the program constraint conditions and aircraft dynamic equations the governing 
equations of programmed motion are developed in the form of differential-algebraic equations. A method for solving the 
equations is proposed. The solution consists of time variations of the aircraft state variables and the demanded control that 
ensures the programmed motion realization. 
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1. Introduction 

Dynamic inversion (inverse simulation) is a system­
atic method of designing controllers for nonlinear control 
systems [1]. The problem involves first prescribing a de­
sired motion and then determining the control inputs to a 
dynamic system that force the system to complete the 
prescribed motion. This can be especially useful for run­
ning unpiloted simulations, studying the required control 
strategies, and evaluating feasibility of the modelled air­
craft maneuvers (or missions).In this paper inverse meth­
ods are applied to an aircraft trajectory prescribed path 
control problem. This is a topic of contemporary interest 
for the integrated design of guidance and control sys­
tems for autonomous/unmanned air vehicles. Most of the 
hitherto attempts, e.g. [2-5], used specified fuselage atti­
tude slew maneuvers and flight velocity to define the per­
formance goals. The four control inputs - deflections of 
aileron, elevator and rudder, and thrust changes - act then 
directly on the first derivatives of the four controlled vari­
ables and the control required to achieve these goals can 
readily be determined from an appropriate subset of the 
dynamic equations. In this way, however, the flight trajec­
tory is neither directly specified nor controlled and the 
usual maneuver segmentation yields discontinuities in the 
motion specification at the transient points [ 4]. 
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The motion specification in this contribution directly 
includes a desired trajectory which is the most natural 
way to prescribe flight maneuvers. A specified flight path 
means two constraints on the position of aircraft mass 
center, and the two other constraints are a condition on 
the airframe attitude with respect to the trajectory and a 
specified flight velocity. An important feature of the tra­
jectory constraints is that their realization is tangent [6, 7] 
- the available control inputs cannot directly regulate the 
balance of the applied and inertial forces in the constrained, 
i.e. orthogonal to trajectory directions. To achieve the 
balance without the actuating forces an appropriate ad­
justing of the fuselage attitude with respect to the trajec­
tory is required. This means two additional constraints on 
airframe attitude (now regulated directly by the available 
controls) and can also be referred to as that the trajectory 
constraints are ,redoubled". The aircraft motion described 
in this way is thus fully specified and a ,paradox" that an 
aircraft, a six-degree-of-freedom system, can explicitly be 
governed by four controls can also be explained. 

2. Mathematical Model of the Aircraft 

Choosing a hybrid coordinate system consisting of 
combined wind (or path) and body centroidal axes, the 
equations of motion of an aircraft take the following matrix 
form: 

·(w) + -(w) (w) _ p(w). mv mw.,. v - , (1) 
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(2) 

where: m and J- vehicle mass and inertia matrix in the 
body axes; vr"'! = [ 1 0 0) Tv - vehicle inertial velocity 
representation in the wind axes; w'"'l and 
w'"l = [ P Q R f- representations of the wind a~es an­
gular velocity w ... and the aircraft (body axes) angular 
velocity (O respectively in the wind and body axes; and 
w -a skew-symmetric matrix associated with w to repre­
sent the vector product in matrix notation, e.g. the prod­
uct COw X v is represented in the path axes as w;:.'') v(l\'). 

The applied forces and moments, F("'l and M (h), respec­
tively in the wind and body axes, are: 

r 
-sin y 1 

mg sin <peas y ; 

cos<pcosy 

(3) 

where: p-air density; S, band ca -lifting surface, wing 
span and mean aerodynamic chord; a and ~ - angles of 
attack and sideslip; <p, y and X - Bryant angles that de­
scribe the orientation of wind axes with respect to Earth 
axes; T, aT and d- thrust value, its inclination angle and 
line offset from the origin of wing/body axes; J T and 
WT = WT (T) -moment of inertia and angular velocity of 
the jet rotating parts. The aerodynamic force and moment 
coefficients are the following functions of state variables 
and control surface deflections ( oa aileron, 8,- elevator, 

8, -rudder): 

c
0 
=c0 (a,~,Oe); c1 =c1 (a,~,P,R,o",o,); 

c5 =c5 (a,~,P,R,or); C111 =c111 (a,Q,o.); (S) 

cL = ctCa,Q,oe); C11 = cn(a,~,P,R,ou,or). 

3. Motion Specifications 

The constraints used to generate the inverse control 
are specified as a desired trajectory in space, a demand on 
airframe attitude with respect to the trajectory and a de­
sired velocity variation (Fig I). These can be stated in the 
following fonns: 

l
x(s)j 

r=r(s)= )i(s) ; 

z(s) 
(6.) 

~ = P(s) or <p = (p(s); 

s=s(t), (6) 

where s is the arc length parameter, and the superscript 
- means specified. The prescribed trajectory (6.) is equiva­
lent to two constraints on position of an aircraft treated as 
a particle in three-dimensional space. Two variant fonns 
of the attitude constraint (6J are then allowed. The first 
one is most often taken as ~ = 0 , which characterizes a 
wide range of maneuvers that v = v(s) assume coordi­
nated turns. The other form of (6b) can serve to model 
some aerobatic maneuvers like roll or bunt. Finally, the 
most natural constraint on flight velocity is v = v(s). This 
can however always be transformed to the form (6) by 
solving the following integral equation: 

!(I) d 
il(s) ==> f ~ = t ==> s(t). 

,
0 

v (s) 
(7) 

In applications, the trajectory ( 6
3

) is first sketched by 
a set of successive points in space, and then interpolated/ 
approximated by spline functions. The foundations of such 
a procedure are described in [2]. The minimum require­
ment for the mathematical model that follows is that the 
functions r(s) must be at least twice differentiable. This 
suggests using spline functions of the third order [6] which 
may however lead to non-smooth variations of the ob­
tained state and control variables [ 4]. So in the present 
work we used the fourth order splines, which consider­
ably improved the obtained results (not reported here for 
shortness). 

As it has already been mentioned, the realization of 
trajectory constraints (6

3
) is tangent [6, 7] - the available 

control inputs cannot directly regulate the balance of the 
applied and inertial forces in the orthogonal to trajectory 
directions. Instead, the balance must be achieved by ap­
propriate adjusting the fuselage attitude with respect to 
the trajectory. This means two additional constraints on 
airframe attitude directly regulated now by coordinated 

I 
/ I 

/ I 
I 

I 

/ /~specified 
trajectory 

r = [x y d 
X 

Fig 1. Prescribed trajectory flight 
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control surface deflections. This can also be referred to as 
that the trajectory constraints are ,redoubled" - the air­
craft motion described by the four constraints (6) is thus 
fully specified. On the other hand, this also explains a 
,paradox" that at most four constraints can be imposed 
on an aircraft- a six-degree-of-freedom system, and that 
the system can explicitly be govern by the four controls 

u=[8a 8. o, Tf(Fig2). 

Specified 
m()tion 

Aircraft Control· 
6 de~rees o_f ¢ 4znputs 

4 constraints freedom 

Fig 2. A ,paradox"/consequence of tangent realization of 
trajectory constraints 

4. Governing equations 

The governing equations of aircraft prescribed tra­
jectory flight can conveniently be written as the following 
set oftwelve differential-algebraic equations (DAEs) [4]: 

0 = F(y, z,u,t)- six modified conditions of con­
straints (6); (8) 

z = G(y, y )-three kinematical differential equations; (9) 

z = H (y, z, u, t )-three dynamic equations (2), ( 10) 

where y=[a ~ q> y xf. z=[P Q Rf, and 
u = [ 8a o. 8, T fare respectively the position, velo­
city, and control variables. The explicit forms of equations 
(8) are: 

~ = ~(S) or q> = cp(s) ; 

[

cos y cos xl [i'1 
cos y.sin X = ~: ; 

-smy z 

0.5pSv 2cv -Tcos(a+aT)cosfJ+mgsinyA + 

+mv=O; 

0.5pSv2 c s +Teas( a+ aT )sin~- mgsinqx;osy + 

+ mv2 
[ i"(sinq>sinycosx- cosq>sinx) + 

(llJ 

+ y'(sinq>sinysinx + cosqx;osx) + (lld) 

+ Z''sinq>cosy] = 0; 

0.5pSv2
cL + Tsin(a+aT )-mgcosq>cosy+ 

+mv2[i .. (cosq>sin ycosx +sin q>sin X)+ 

+ y .. (cos q>sin ysin x- sin q>cosx) + 

+ z' cosq>cosy] = 0, 

(llJ 

where the superscript ' means derivative with respect to 

s, and (llb) stands for two equations for the determination 
of g and c. Equations (9) and ( 1 0) read then as follows [ 4]: 

[ I, 
0 -tHl+ -~~· 
ly 

0 

[_~Q 
-R 

Q ][ J, 
0 

-Jq n (13) 
0 -P 0 ly 0 Q =M<b>, 
p 0 -] xy 0 Jz R 

where 

[
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sin a cos~ 

0 
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5. Numerical Procedure 

-cos a sin~ 

cos~ 
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cosq>cosy 

-s~na], 
cos a 

The solution to DAEs (8)-:-(1 0), given explicitly in 
(11)-:-(13), are time-variations of state variables y(t) and 
z(t) in the prescribed motion, and of control u(t) that as­
sures the realization of the motion. Using the simplest 
Euler backward difference approximation method [8] the 
following procedure for solving the DAEs can be pro­
posed. Given Yn, Zn and un at time tn, the values Yn+I, 

Zn+l and un+l at time tn+l = tn + Llt can be found as a 
solution to the following set of non-linear algebraic equa­
tions: 

-G( Yn+I-Yn). 
Zn+l- Yn+l • L1t • 

(14) 

In this way the solution can be advanced from time 
tn to tn+I. The Euler code can possibly be replaced by 
more accurate higher-order backward difference approxi­
mation methods [5]. 

6. Case Study 

The basic application of discussed method for syn­
thesis automatic jet aircrafts control system became veri-
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fied across realisation some numerical simulations, 
in which favourably one projected system in different con­
ditions and at different nominal trajectories was verified. 

The results of numerical simulation of modelled M96 
Iryda jet aircraft loiter flight are shown in Fig 3+ 7. In the 
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considered case, the trajectory, shown in Fig 3 was 
sketched by few points and then interpolated threw this 
points by 4th-order spline functions. The aircraft was then 
demanded to fly along the modelled trajectory at constant: 
velocity V = 130 ms-1 and altitude of flight 103m. The 
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condition of coordinated turns ( ~ = 0) was assumed. 
The obtained variations of nominal control 

8" o. lir T, shown in Fig 4, were calculated accor­
ding (14). 

The results for angle off attack o: as well as the 
angular velocity p and appropriate roll angle cp are shown 
respectively in Figs 5 and 6. 

The results for altitude H and following linear 
velocity V0 are shown in Fig 7. The successful results of 
the research allow to build one's hopes that obtained 
inverse control variations can be used as powerful tool 

in the reconstruction of flight events/accidents. 

7. Final Remarks and Conclusions 

The achievements of this paper and the other experi­
ences of the authors [6, 7], related to the subject in hand, 
can be summarized in the following six points: 

l. A uniform mathematical model for aircraft prescribed 
trajectory flight simulation has been presented. The ob­
tained solution consists of: 

time-variations of state variables in the prescribed 
motion, 
time-variations of the demanded control. 
2. A simple numerical procedure for solving the fol­

lowed governing differential-algebraic equations has been 
proposed and tested (not reported here). 

3. There are at least three fields of direct application 
of the developed model: 

simulation and analysis of nature and feasibility (con­
trollability) of a wide range of aircraft maneuvers, 
including extreme flight conditions and aerobatic 
maneuvers, 
design of unmanned aerial vehicles missions and their 
simulation, 
reconstruction of flight events/accidents. 
4. The obtained inverse control variations can be 

used as control inputs (an open-loop tracking control) to 
aircraft in prescribed trajectory flight. 

5. The inverse control should be enhanced by the 

addition of an appropriate feedback control. Only the re­
sulting composite control will provide stable tracking of 
the required reference trajectories in the presence of per­
turbations and uncertainties in the aircraft dynamics. A 
linearized feedback can be developed as a minor exten­
sion of the proposed inverse control (not reported here 
for shortness). 

6. The ongoing research on the project is focussed 
on three main problems: 

efficient numerical modelling of aircraft prescribed 
trajectories using 4th-order spline functions, 
design of linearized feedback control to enhance the 
inverse control, 
verification of the developed dynamic models and 
control laws. 
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